opencv保姆级讲解——光学学符识别(OCR)(4)

光学字符识别

(Optical Character Recognition, OCR)是指对文本材料的图像文件进行分析识别处理,以获取文字和版本信息的过程。也就是说将图象中的文字进行识别,并返回文本形式的内容

以下是比较流行的开源的ORC识别库

  1. Tesseract OCR Tesseract 是 Google 赞助的一个开源 OCR 引擎,支持多种语言,包括中文。它是最流行和最成熟的 OCR
  2. PaddleOCR PaddleOCR 是基于 PaddlePaddle 的 OCR 工具,集成了文本检测和识别模型,支持多种语言,包括中文。
  3. EasyOCR EasyOCR 是一个轻量级的 OCR 库,支持多种语言,包括中文。它使用 PyTorch 作为后端

PaddleHub 介绍

PaddleHub现已开源OCR文字识别的预训练模型

移动端的超轻量模型:仅有8.6M,chinese_ocr_db_crnn_mobile。

服务器端的精度更高模型:识别精度更高,chinese_ocr_db_crnn_server。

该 Module 用于识别图片当中的汉字、数字、字母。如果仅需要检测,也可单独使用chinese_text_detection_db_server或者chinese_text_detection_db_mobile得到检测结果的文本框

开发者可以基于PaddleHub提供的OCR中文识别Module,实现一键文字识别,适用于常见的OCR应用场景中。

OCR的应用场景

​ 根据OCR的应用场景而言,我们可以大致分成识别特定场景下的专用OCR以及识别多种场景下的通用OCR。就前者而言,证件识别以及车牌识别就是专用OCR的典型案例。针对特定场景进行设计、优化以达到最好的特定场景下的效果展示。那通用的OCR就是使用在更多、更复杂的场景下,拥有比较好的泛性。在这个过程中由于场景的不确定性,比如:图片背景极其丰富、亮度不均衡、光照不均衡、残缺遮挡、文字扭曲、字体多样等等问题,会带来极大的挑战。现PaddleHub为大家提供的是超轻量级中文OCR模型,聚焦特定的场景,支持中英文数字组合式别、竖排文字识别、长文本识别场景

应用案例

下面是完整案例

python 复制代码
import paddlehub as hub
import cv2
#识别图片的文字
def get_text():
    img = cv2.imread("../images/chepiao.png")
    #加载模型
    ocr = hub.Module(name="chinese_ocr_db_crnn_server")
	#识别文本
    results = ocr.recognize_text(images=[img]);
    for result in results:
        data = result['data']
        for x in data:
            print('文本: ', x['text'], '识别文本结果置信度: ', x['confidence'], '文本框在原图中的像素坐标: ',
                  x['text_box_position'])

if __name__ =="__main__":
    get_text()

代码解释

1 加载模型,"chinese_ocr_db_crnn_server"是 服务器端的精度更高模型

移动端的超轻量模型:仅有8.6M,chinese_ocr_db_crnn_mobile。

服务器端的精度更高模型:识别精度更高,chinese_ocr_db_crnn_server。

复制代码
 ocr = hub.Module(name="chinese_ocr_db_crnn_server")

2 识别图片文本

pyhton 复制代码
     results = ocr.recognize_text(images=[img])

3 打印结果信息

python 复制代码
for result in results:
    data = result['data']
    for x in data:
        print('文本: ', x['text'], '识别文本结果置信度: ', x['confidence'], '文本框在原图中的像素坐标: ',
              x['text_box_position'])

测试

python 复制代码
import paddlehub as hub
import cv2
#识别图片的文字
def get_text(img):
    ocr = hub.Module(name="chinese_ocr_db_crnn_server")
    rs = ocr.recognize_text(images=[img])
    return rs

if __name__ =="__main__":
    img = cv2.imread("../images/car2.png")
    rs = get_text(img)
    print(rs)
相关推荐
-大头.几秒前
2025 Maven终极实战:AI与云原生构建新范式
人工智能·云原生·maven
专注数据的痴汉几秒前
「数据获取」中华人民共和国乡镇行政区划简册(2010-2017)(2011-2012缺失)
大数据·人工智能·信息可视化
ULTRA??2 分钟前
强化学习算法分类,工具箱AI总结
开发语言·c++·人工智能
老欧学视觉2 分钟前
0014机器学习案例一电信客户流失预测
人工智能·机器学习
shayudiandian5 分钟前
TensorFlow vs PyTorch:哪个更适合你?
人工智能·pytorch·tensorflow
yiersansiwu123d6 分钟前
AI 重构就业生态:结构性变革下的生存法则与突围路径
人工智能·重构
专注数据的痴汉7 分钟前
「数据获取」中国河流水系 2000 至 2022 年变化矢量数据集
大数据·人工智能·信息可视化
海边夕阳20067 分钟前
【每天一个AI小知识】:什么是自然语言处理?
人工智能·深度学习·计算机视觉·语言模型·自然语言处理
我很哇塞耶9 分钟前
告别VAE压缩损耗,南京大学用DiP让扩散模型回归像素空间,实现10倍加速与SOTA级画质
人工智能·ai·大模型·图像生成
数据皮皮侠11 分钟前
中国气候政策不确定性数据(2000-2022)
大数据·数据库·人工智能·信息可视化·微信开放平台