深度学习实验一致性(究极版)

bash 复制代码
import os
import torch
import numpy as np
import random

os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True)



def set_seed(seed_value=42):

    print(seed_value)

    random.seed(seed_value)

    np.random.seed(seed_value)

    torch.manual_seed(seed_value)

    torch.cuda.manual_seed(seed_value)

    torch.cuda.manual_seed_all(seed_value)

    torch.backends.cudnn.deterministic = True

    torch.backends.cudnn.benchmark = False

试了n多次,每次即使设置了随机种子还是会有不一致的结果。感觉可能是因为模型包含写随机操作,使用torch.backends.cudnn.deterministic = True 好像就能解决这个问题,目前影响还没发现

相关推荐
矢量赛奇5 分钟前
创意加速器3个AI工具,让创作速度超光速!
人工智能
是阿千呀!23 分钟前
(时序论文阅读)TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting
论文阅读·人工智能·深度学习·自然语言处理·时间序列处理
神奇夜光杯24 分钟前
Python酷库之旅-第三方库Pandas(208)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
李歘歘26 分钟前
万字长文解读机器学习——决策树
人工智能·决策树·机器学习
EterNity_TiMe_32 分钟前
【论文复现】自动化细胞核分割与特征分析
运维·人工智能·python·数据分析·自动化·特征分析
极客代码41 分钟前
【Python TensorFlow】进阶指南(续篇二)
开发语言·人工智能·python·深度学习·tensorflow
池央1 小时前
丹摩征文活动 | 搭建 CogVideoX-2b详细教程:用短短6秒展现创作魅力
人工智能
QYR市场调研1 小时前
5G时代的关键元件:射频微波MLCCs市场前景广阔
人工智能
AI小白日记1 小时前
深入探索AutoDL平台:深度学习GPU算力最佳选择
人工智能·深度学习·gpu算力
一尘之中2 小时前
元宇宙及其技术
人工智能