深度学习实验一致性(究极版)

bash 复制代码
import os
import torch
import numpy as np
import random

os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True)



def set_seed(seed_value=42):

    print(seed_value)

    random.seed(seed_value)

    np.random.seed(seed_value)

    torch.manual_seed(seed_value)

    torch.cuda.manual_seed(seed_value)

    torch.cuda.manual_seed_all(seed_value)

    torch.backends.cudnn.deterministic = True

    torch.backends.cudnn.benchmark = False

试了n多次,每次即使设置了随机种子还是会有不一致的结果。感觉可能是因为模型包含写随机操作,使用torch.backends.cudnn.deterministic = True 好像就能解决这个问题,目前影响还没发现

相关推荐
锋行天下3 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮4 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水5 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊5 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
PixelMind5 小时前
【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
深度学习·音视频·超分辨率·vsr
湘-枫叶情缘5 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
噜~噜~噜~5 小时前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
Aaron15885 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-14555 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
lx7416026986 小时前
change-detection关于llm方向的任务与优化
深度学习