第3章:角色扮演提示-Claude应用开发教程

更多教程,请访问claude应用开发教程

设置

运行以下设置单元以加载您的 API 密钥并建立 get_completion 辅助函数。

ini 复制代码
!pip install anthropic

# Import python's built-in regular expression library
`import re
import anthropic`

# Retrieve the API_KEY & MODEL_NAME variables from the IPython store

%store -r API_KEY
%store -r MODEL_NAME

client = anthropic.Anthropic(api_key=API_KEY)

def get_completion(prompt: str, system_prompt=""):
    message = client.messages.create(
        model=MODEL_NAME,
        max_tokens=2000,
        temperature=0.0,
        system=system_prompt,
        messages=[
          {"role": "user", "content": prompt}
        ]
    )
    return message.content[0].text

课程

继续讨论克劳德除了你说的话之外没有其他背景这一主题,有时需要提示克劳德扮演一个特定的角色(包括所有必要的背景)。这也称为角色提示。角色背景越详细越好。

用角色引导克劳德可以提高克劳德在写作、编码和总结等各个领域的表现。这就像人类有时被告知"像__一样思考"时会得到帮助一样。角色提示还可以改变克劳德回应的风格、语气和方式。

注意:角色提示可以在系统提示中发生,也可以作为用户消息轮换的一部分发生。

示例

在下面的例子中,我们看到,在没有角色提示的情况下,当被要求用一句话来描述滑板时,克劳德给出了一个直截了当、非程式化的答案。

然而,当我们让克劳德扮演一只猫的角色时,克劳德的视角发生了变化,因此克劳德的回应​​语气、风格和内容都适应了新角色。

注意:您可以使用的额外技巧是向克劳德提供其目标受众的背景。下面,我们可以调整提示,告诉克劳德它应该和谁说话。"你是一只猫"产生的反应与"你是一只在和一群滑板手说话的猫"完全不同。

以下是系统提示中没有角色提示的提示:

ini 复制代码
# Prompt
PROMPT = "In one sentence, what do you think about skateboarding?"

# Print Claude's response
print(get_completion(PROMPT))

这是相同的用户问题,但有角色提示。

ini 复制代码
# System prompt
SYSTEM_PROMPT = "You are a cat."

# Prompt
PROMPT = "In one sentence, what do you think about skateboarding?"

# Print Claude's response
print(get_completion(PROMPT, SYSTEM_PROMPT))

您可以使用角色提示让 Claude 模仿某些写作风格、用特定语气说话或引导其答案的复杂性。角色提示还可以让 Claude 更好地执行数学或逻辑任务。

例如,在下面的例子中,有一个明确的正确答案,即是。然而,Claude 答错了,并认为它缺乏信息,但事实并非如此:

ini 复制代码
# Prompt
PROMPT = "Jack is looking at Anne. Anne is looking at George. Jack is married, George is not, and we don't know if Anne is married. Is a married person looking at an unmarried person?"

# Print Claude's response
print(get_completion(PROMPT))

现在,如果我们让 Claude 扮演逻辑机器人的角色会怎么样?这会如何改变 Claude 的答案?

事实证明,通过这项新的角色分配,Claude 做对了。(尽管显然不是出于所有正确的原因)

ini 复制代码
# System prompt
SYSTEM_PROMPT = "You are a logic bot designed to answer complex logic problems."

# Prompt
PROMPT = "Jack is looking at Anne. Anne is looking at George. Jack is married, George is not, and we don't know if Anne is married. Is a married person looking at an unmarried person?"

# Print Claude's response
print(get_completion(PROMPT, SYSTEM_PROMPT))

注意:您将在本课程中学习到,您可以使用多种提示工程技术来获得类似的结果。使用哪种技术取决于您和您的偏好!我们鼓励您进行实验以找到自己的提示工程风格。

如果您想在不更改上述任何内容的情况下尝试课程提示,请一直滚动到课程笔记本的底部以访问示例游乐场。

练习

练习 3.1 -- 数学更正

在某些情况下,Claude 可能会在数学方面遇到困难,即使是简单的数学。下面,Claude 错误地将数学问题评估为已正确解决,即使第二步中存在明显的算术错误。请注意,Claude 在逐步执行时实际上发现了错误,但并没有得出整体解决方案是错误的结论。

修改 PROMPT 和/或 SYSTEM_PROMPT,使 Claude 将解决方案评为错误解决,而不是正确解决。

python 复制代码
# System prompt - if you don't want to use a system prompt, you can leave this variable set to an empty string
SYSTEM_PROMPT = ""

# Prompt
PROMPT = """Is this equation solved correctly below?

2x - 3 = 9
2x = 6
x = 3"""

# Get Claude's response
response = get_completion(PROMPT, SYSTEM_PROMPT)

# Function to grade exercise correctness
def grade_exercise(text):
    if "incorrect" in text or "not correct" in text.lower():
        return True
    else:
        return False

# Print Claude's response and the corresponding grade
print(response)
print("\n--------------------------- GRADING ---------------------------")
print("This exercise has been correctly solved:", grade_exercise(response))

总结

如果您已经解决了到目前为止的所有练习,那么您就可以进入下一章了。祝您好运!

示例广场

这是一个供您自由试验本课中显示的提示示例的区域,并调整提示以查看它如何影响 Claude 的回答。

ini 复制代码
# Prompt
PROMPT = "In one sentence, what do you think about skateboarding?"

# Print Claude's response
print(get_completion(PROMPT))

# System prompt
SYSTEM_PROMPT = "You are a cat."

# Prompt
PROMPT = "In one sentence, what do you think about skateboarding?"

# Print Claude's response
print(get_completion(PROMPT, SYSTEM_PROMPT))

# Prompt
PROMPT = "Jack is looking at Anne. Anne is looking at George. Jack is married, George is not, and we don't know if Anne is married. Is a married person looking at an unmarried person?"

# Print Claude's response
print(get_completion(PROMPT))
     

# System prompt
SYSTEM_PROMPT = "You are a logic bot designed to answer complex logic problems."

# Prompt
PROMPT = "Jack is looking at Anne. Anne is looking at George. Jack is married, George is not, and we don't know if Anne is married. Is a married person looking at an unmarried person?"

# Print Claude's response
print(get_completion(PROMPT, SYSTEM_PROMPT))
相关推荐
静静AI学堂21 分钟前
Yolo11改策略:卷积改进|SAC,提升模型对小目标和遮挡目标的检测性能|即插即用
人工智能·深度学习·目标跟踪
martian66544 分钟前
【人工智能离散数学基础】——深入详解数理逻辑:理解基础逻辑概念,支持推理和决策系统
人工智能·数理逻辑·推理·决策系统
Schwertlilien1 小时前
图像处理-Ch7-图像金字塔和其他变换
图像处理·人工智能
凡人的AI工具箱1 小时前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
千天夜1 小时前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
凡人的AI工具箱1 小时前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django
小军军军军军军1 小时前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
诚威_lol_中大努力中1 小时前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金2 小时前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_2 小时前
Product Hunt 今日热榜 | 2024-12-25
人工智能