leetcode707. Design Linked List

Design your implementation of the linked list. You can choose to use a singly or doubly linked list.

A node in a singly linked list should have two attributes: val and next. val is the value of the current node, and next is a pointer/reference to the next node.

If you want to use the doubly linked list, you will need one more attribute prev to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.

Implement the MyLinkedList class:

MyLinkedList() Initializes the MyLinkedList object.
int get(int index) Get the value of the indexth node in the linked list. If the index is invalid, return -1.
void addAtHead(int val) Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
void addAtTail(int val) Append a node of value val as the last element of the linked list.
void addAtIndex(int index, int val) Add a node of value val before the indexth node in the linked list. If index equals the length of the linked list, the node will be appended to the end of the linked list. If index is greater than the length, the node will not be inserted.
void deleteAtIndex(int index) Delete the indexth node in the linked list, if the index is valid.

Example 1:

Input

["MyLinkedList", "addAtHead", "addAtTail", "addAtIndex", "get", "deleteAtIndex", "get"]

[[], [1], [3], [1, 2], [1], [1], [1]]

Output

[null, null, null, null, 2, null, 3]

Explanation

MyLinkedList myLinkedList = new MyLinkedList();

myLinkedList.addAtHead(1);

myLinkedList.addAtTail(3);

myLinkedList.addAtIndex(1, 2); // linked list becomes 1->2->3

myLinkedList.get(1); // return 2

myLinkedList.deleteAtIndex(1); // now the linked list is 1->3

myLinkedList.get(1); // return 3

Constraints:

0 <= index, val <= 1000
Please do not use the built-in LinkedList library.
At most 2000 calls will be made to get, addAtHead, addAtTail, addAtIndex and deleteAtIndex.

你可以选择使用单链表或者双链表,设计并实现自己的链表。

单链表中的节点应该具备两个属性:val 和 next 。val 是当前节点的值,next 是指向下一个节点的指针/引用。

如果是双向链表,则还需要属性 prev 以指示链表中的上一个节点。假设链表中的所有节点下标从 0 开始。

实现 MyLinkedList 类:

MyLinkedList() 初始化 MyLinkedList 对象。
int get(int index) 获取链表中下标为 index 的节点的值。如果下标无效,则返回 -1 。
void addAtHead(int val) 将一个值为 val 的节点插入到链表中第一个元素之前。在插入完成后,新节点会成为链表的第一个节点。
void addAtTail(int val) 将一个值为 val 的节点追加到链表中作为链表的最后一个元素。
void addAtIndex(int index, int val) 将一个值为 val 的节点插入到链表中下标为 index 的节点之前。如果 index 等于链表的长度,那么该节点会被追加到链表的末尾。如果 index 比长度更大,该节点将 不会插入 到链表中。
void deleteAtIndex(int index) 如果下标有效,则删除链表中下标为 index 的节点。

示例:

输入

["MyLinkedList", "addAtHead", "addAtTail", "addAtIndex", "get", "deleteAtIndex", "get"]

[[], [1], [3], [1, 2], [1], [1], [1]]

输出

[null, null, null, null, 2, null, 3]

解释

MyLinkedList myLinkedList = new MyLinkedList();

myLinkedList.addAtHead(1);

myLinkedList.addAtTail(3);

myLinkedList.addAtIndex(1, 2); // 链表变为 1->2->3

myLinkedList.get(1); // 返回 2

myLinkedList.deleteAtIndex(1); // 现在,链表变为 1->3

myLinkedList.get(1); // 返回 3

提示:

0 <= index, val <= 1000
请不要使用内置的 LinkedList 库。
调用 get、addAtHead、addAtTail、addAtIndex 和 deleteAtIndex 的次数不超过 2000 。

思路

定义节点结构: 创建一个节点结构,其中包含一个值(value)和一个指向下一个节点的指针(next)

初始化链表: 创建一个链表类(LinkedList),其中包含头节点(head)和链表长度(size)。初始时,头节点为空,链表长度为0

考虑边界情况:在实现方法时,需要考虑链表为空、插入位置为头部或尾部、以及超出链表长度等边界情况


```python
class ListNode:
    def __init__(self, val=0, next=None):
        self.val = val
        self.next = next

class MyLinkedList:
    def __init__(self):
        self.head = None
        self.size = 0

    def get(self, index: int) -> int:
        if index < 0 or index >= self.size:
            return -1
        current_node = self.head
        for _ in range(index):
            current_node = current_node.next
        return current_node.val

    def addAtHead(self, val: int) -> None:
        self.head = ListNode(val, self.head)
        self.size += 1

    def addAtTail(self, val: int) -> None:
        if not self.head:
            self.addAtHead(val)
            return
        current_node = self.head
        while current_node.next:
            current_node = current_node.next
        current_node.next = ListNode(val)
        self.size += 1

    def addAtIndex(self, index: int, val: int) -> None:
        if index > self.size:
            return
        if index <= 0:
            self.addAtHead(val)
            return
        current_node = self.head
        for _ in range(index - 1):
            current_node = current_node.next
        current_node.next = ListNode(val, current_node.next)
        self.size += 1

    def deleteAtIndex(self, index: int) -> None:
        if index < 0 or index >= self.size:
            return
        if index == 0:
            self.head = self.head.next
        else:
            current_node = self.head
            for _ in range(index - 1):
                current_node = current_node.next
            current_node.next = current_node.next.next
        self.size -= 1
复制代码
相关推荐
_OLi_4 分钟前
力扣 LeetCode 27. 移除元素(Day1:数组)
算法·leetcode·职场和发展
李歘歘17 分钟前
深度学习——前向传播与反向传播、神经网络(前馈神经网络与反馈神经网络)、常见算法概要汇总
深度学习·神经网络·算法
想七想八不如1140819 分钟前
【数据分析与数据挖掘】决策树算法
算法·数据挖掘·数据分析
菜鸟得菜2 小时前
动态规划---解决多段图问题
算法·动态规划
丶Darling.2 小时前
Day39 | 动态规划 :完全背包应用 零钱兑换&&零钱兑换II
c++·算法·动态规划
Mr_Xuhhh2 小时前
递归搜索与回溯算法--递归(2)
开发语言·数据结构·c++·算法·链表·深度优先
AnFany2 小时前
LeetCode【0012】整数转罗马数字
python·算法·leetcode·罗马数字
一个不喜欢and不会代码的码农2 小时前
力扣872:叶子相似的树
数据结构·算法·leetcode
Jeffrey_oWang3 小时前
硬间隔支持向量机
算法·机器学习·支持向量机
Ethan Hunt丶3 小时前
C语言实现IIR型零相位带通滤波器
c语言·开发语言·算法