parallelStream()使用注意点

parallelStream()使用中的注意点:

1、并行流如果使用,最好使用自定义的线程池,避免使用默认的线程池,以免千万阻塞或者资源竞争等问题。

2、parallelStream适用的场景是CPU密集型的,假如本身电脑CPU的负载很大,那还到处用并行流就无法起到作用,切记不要再parallelStream操作中使用IO流

3、不要在多线程中使用parallelStream,因为大家都在抢占CPU,是不会提升效果,反而可能加大线程之间切换上下文的开销。

Runtime.getRuntime.availableProcessors()是JDK提供的获取当前系统的可能核心数,而现在多数应用是发布在容器中的,虽然部署的容器是2C4G的,但是ForkJoinPool创建的FokJoinPool可能会创建出几十个线程,因为程序部署在docker容器中,那么获取的是宿主机的CPU核心数。

容器明明分配的是2C,为什么java获取的会是物理机的核心数呢?怎么解决这个问题呢?

1、使用JDKu131以上的版本

2、使用自编译源代码的方式

相关推荐
老百姓懂点AI26 分钟前
[WASM实战] 插件系统的安全性:智能体来了(西南总部)AI调度官的WebAssembly沙箱与AI agent指挥官的动态加载
人工智能·wasm
人工智能训练7 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海7 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor9 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19829 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了9 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队9 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒10 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜60010 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房10 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai