parallelStream()使用注意点

parallelStream()使用中的注意点:

1、并行流如果使用,最好使用自定义的线程池,避免使用默认的线程池,以免千万阻塞或者资源竞争等问题。

2、parallelStream适用的场景是CPU密集型的,假如本身电脑CPU的负载很大,那还到处用并行流就无法起到作用,切记不要再parallelStream操作中使用IO流

3、不要在多线程中使用parallelStream,因为大家都在抢占CPU,是不会提升效果,反而可能加大线程之间切换上下文的开销。

Runtime.getRuntime.availableProcessors()是JDK提供的获取当前系统的可能核心数,而现在多数应用是发布在容器中的,虽然部署的容器是2C4G的,但是ForkJoinPool创建的FokJoinPool可能会创建出几十个线程,因为程序部署在docker容器中,那么获取的是宿主机的CPU核心数。

容器明明分配的是2C,为什么java获取的会是物理机的核心数呢?怎么解决这个问题呢?

1、使用JDKu131以上的版本

2、使用自编译源代码的方式

相关推荐
leo__5205 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体5 小时前
云厂商的AI决战
人工智能
njsgcs5 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派6 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch6 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中6 小时前
第1章 机器学习基础
人工智能·机器学习
wyw00006 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI6 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20107 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲7 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程