parallelStream()使用注意点

parallelStream()使用中的注意点:

1、并行流如果使用,最好使用自定义的线程池,避免使用默认的线程池,以免千万阻塞或者资源竞争等问题。

2、parallelStream适用的场景是CPU密集型的,假如本身电脑CPU的负载很大,那还到处用并行流就无法起到作用,切记不要再parallelStream操作中使用IO流

3、不要在多线程中使用parallelStream,因为大家都在抢占CPU,是不会提升效果,反而可能加大线程之间切换上下文的开销。

Runtime.getRuntime.availableProcessors()是JDK提供的获取当前系统的可能核心数,而现在多数应用是发布在容器中的,虽然部署的容器是2C4G的,但是ForkJoinPool创建的FokJoinPool可能会创建出几十个线程,因为程序部署在docker容器中,那么获取的是宿主机的CPU核心数。

容器明明分配的是2C,为什么java获取的会是物理机的核心数呢?怎么解决这个问题呢?

1、使用JDKu131以上的版本

2、使用自编译源代码的方式

相关推荐
ai_top_trends1 分钟前
AI 生成 PPT 工具横评:效率、质量、稳定性一次说清
人工智能·python·powerpoint
三千世界0065 分钟前
Claude Code Agent Skills 自动发现原理详解
人工智能·ai·大模型·agent·claude·原理
云和恩墨7 分钟前
数据库运维的下一步:Bethune X以AI实现从可观测到可处置
人工智能·aiops·数据库监控·数据库运维·数据库巡检
飞睿科技10 分钟前
探讨雷达在智能家居与消费电子领域的应用
人工智能·嵌入式硬件·智能家居·雷达·毫米波雷达
沛沛老爹13 分钟前
Web转AI决策篇 Agent Skills vs MCP:选型决策矩阵与评估标准
java·前端·人工智能·架构·rag·web转型
Baihai_IDP18 分钟前
如何减少单智能体输出结果的不确定性?利用并行智能体的“集体智慧”
人工智能·面试·llm
老蒋每日coding18 分钟前
AI智能体设计模式系列(五)—— 工具使用模式
人工智能·设计模式
抠头专注python环境配置19 分钟前
2026终极诊断指南:解决Windows PyTorch GPU安装失败,从迷茫到确定
人工智能·pytorch·windows·深度学习·gpu·环境配置·cuda
GISer_Jing21 分钟前
Claude Skills
人工智能·prompt·aigc
丝斯201121 分钟前
AI学习笔记整理(49)——大模型应用开发框架:LangChain
人工智能·笔记·学习