parallelStream()使用注意点

parallelStream()使用中的注意点:

1、并行流如果使用,最好使用自定义的线程池,避免使用默认的线程池,以免千万阻塞或者资源竞争等问题。

2、parallelStream适用的场景是CPU密集型的,假如本身电脑CPU的负载很大,那还到处用并行流就无法起到作用,切记不要再parallelStream操作中使用IO流

3、不要在多线程中使用parallelStream,因为大家都在抢占CPU,是不会提升效果,反而可能加大线程之间切换上下文的开销。

Runtime.getRuntime.availableProcessors()是JDK提供的获取当前系统的可能核心数,而现在多数应用是发布在容器中的,虽然部署的容器是2C4G的,但是ForkJoinPool创建的FokJoinPool可能会创建出几十个线程,因为程序部署在docker容器中,那么获取的是宿主机的CPU核心数。

容器明明分配的是2C,为什么java获取的会是物理机的核心数呢?怎么解决这个问题呢?

1、使用JDKu131以上的版本

2、使用自编译源代码的方式

相关推荐
WWZZ20255 分钟前
快速上手大模型:深度学习5(实践:过、欠拟合)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
却道天凉_好个秋17 分钟前
OpenCV(二十七):中值滤波
人工智能·opencv·计算机视觉
_codemonster18 分钟前
深度学习实战(基于pytroch)系列(三十三)循环神经网络RNN
人工智能·rnn·深度学习
AutumnorLiuu25 分钟前
【红外小目标检测实战】Yolov11加入SPDConv,HDC,ART等模块
人工智能·yolo·目标检测
Evand J26 分钟前
【TCN与LSTM例程】TCN(时间卷积网络)与LSTM(长短期记忆)训练单输入单输出,用于拟合一段信号,便于降噪。MATLAB
网络·人工智能·matlab·lstm
胖好白27 分钟前
【RK3588开发】模型部署全流程
linux·人工智能
sensen_kiss44 分钟前
INT305 Machine Learning 机器学习 Pt.9 Probabilistic Models(概率模型)
人工智能·机器学习·概率论
非著名架构师1 小时前
智慧气象护航:构建陆海空立体交通气象安全保障体系
大数据·人工智能·安全·疾风气象大模型4.0·疾风气象大模型·风光功率预测
tech-share1 小时前
基于pytorch 自建AI大模型
人工智能·深度学习·机器学习·gpu算力
夏洛克信徒2 小时前
从 “工具” 到 “代理”:Gemini 3.0 重构 AI 能力边界,开启智能协作新纪元
大数据·人工智能·神经网络