parallelStream()使用注意点

parallelStream()使用中的注意点:

1、并行流如果使用,最好使用自定义的线程池,避免使用默认的线程池,以免千万阻塞或者资源竞争等问题。

2、parallelStream适用的场景是CPU密集型的,假如本身电脑CPU的负载很大,那还到处用并行流就无法起到作用,切记不要再parallelStream操作中使用IO流

3、不要在多线程中使用parallelStream,因为大家都在抢占CPU,是不会提升效果,反而可能加大线程之间切换上下文的开销。

Runtime.getRuntime.availableProcessors()是JDK提供的获取当前系统的可能核心数,而现在多数应用是发布在容器中的,虽然部署的容器是2C4G的,但是ForkJoinPool创建的FokJoinPool可能会创建出几十个线程,因为程序部署在docker容器中,那么获取的是宿主机的CPU核心数。

容器明明分配的是2C,为什么java获取的会是物理机的核心数呢?怎么解决这个问题呢?

1、使用JDKu131以上的版本

2、使用自编译源代码的方式

相关推荐
古城小栈16 分钟前
雾计算架构:边缘-云端协同的分布式 AI 推理
人工智能·分布式·架构
JoannaJuanCV17 分钟前
自动驾驶—CARLA仿真(7)vehicle_physics demo
人工智能·机器学习·自动驾驶
Allen正心正念202523 分钟前
AWS专家Greg Coquillo提出的 6种LLM ORCHESTRATION PATTERNS解析
人工智能·架构
每日学点SEO25 分钟前
「网站新页面冲进前10名成功率下降69%」:2025 年SEO竞争格局分析
大数据·数据库·人工智能·搜索引擎·chatgpt
HalvmånEver32 分钟前
AI 工具实战测评:从技术性能到场景落地的全方位解析
人工智能·ai
碧海银沙音频科技研究院41 分钟前
论文写作word插入公式显示灰色解决办法
人工智能·深度学习·算法
O561 6O623O7 安徽正华露1 小时前
露,AI人工智能Barnes迷宫 AI人工智能自动记录水迷宫
人工智能
十铭忘1 小时前
SAM2跟踪的理解6——mask decoder
人工智能·计算机视觉
不会计算机的g_c__b1 小时前
AI Agent 三大核心组件解析:规划、记忆与工具使用,构建真正智能体
人工智能
听风吹等浪起1 小时前
机器学习算法:随机梯度下降算法
人工智能·深度学习·算法·机器学习