parallelStream()使用注意点

parallelStream()使用中的注意点:

1、并行流如果使用,最好使用自定义的线程池,避免使用默认的线程池,以免千万阻塞或者资源竞争等问题。

2、parallelStream适用的场景是CPU密集型的,假如本身电脑CPU的负载很大,那还到处用并行流就无法起到作用,切记不要再parallelStream操作中使用IO流

3、不要在多线程中使用parallelStream,因为大家都在抢占CPU,是不会提升效果,反而可能加大线程之间切换上下文的开销。

Runtime.getRuntime.availableProcessors()是JDK提供的获取当前系统的可能核心数,而现在多数应用是发布在容器中的,虽然部署的容器是2C4G的,但是ForkJoinPool创建的FokJoinPool可能会创建出几十个线程,因为程序部署在docker容器中,那么获取的是宿主机的CPU核心数。

容器明明分配的是2C,为什么java获取的会是物理机的核心数呢?怎么解决这个问题呢?

1、使用JDKu131以上的版本

2、使用自编译源代码的方式

相关推荐
weixin_3981877515 分钟前
YOLOv11 PPHGNetV2主干网络集成指南
人工智能·yolo
敏叔V58718 分钟前
LangChain × LlamaIndex:解锁复杂AI工作流与自定义工具集成的终极指南
人工智能·langchain
sunfove20 分钟前
光电共封装(CPO):突破算力互连瓶颈的关键架构
人工智能·架构
Piar1231sdafa36 分钟前
YOLO11-C3k2-RVB-EMA多色线缆颜色识别与分类系统详解
人工智能·分类·数据挖掘
大山同学42 分钟前
深度学习任务分类与示例(一)
人工智能·深度学习·分类
一条闲鱼_mytube1 小时前
智能体设计模式(二)反思-工具使用-规划
网络·人工智能·设计模式
m0_748254661 小时前
CSS AI 编程
前端·css·人工智能
愚公搬代码1 小时前
【愚公系列】《AI+直播营销》030-主播的选拔和人设设计(选拔匹配的主播)
人工智能
三不原则1 小时前
故障案例:告警风暴处理,用 AI 实现告警聚合与降噪
人工智能
这张生成的图像能检测吗1 小时前
(论文速读)GNS:学习用图网络模拟复杂物理
人工智能·图神经网络·物理模型