Spark RDD中常用聚合算子源码层面的对比分析

在 Spark RDD 中,groupByKeyreduceByKeyfoldByKeyaggregateByKey 是常用的聚合算子,适用于按键进行数据分组和聚合。它们的实现方式各不相同,涉及底层调用的函数也有区别。以下是对这些算子在源码层面的分析,以及每个算子适用的场景和代码示例。


1. groupByKey

  • 功能 :将相同键的值分组,形成一个 (key, Iterable<values>) 的 RDD。

  • 源码分析
    groupByKey 底层使用了 combineByKeyWithClassTag 方法进行数据分组。

    scala 复制代码
    def groupByKey(): RDD[(K, Iterable[V])] = {
        combineByKeyWithClassTag(
          (v: V) => mutable.ArrayBuffer(v),
          (c: mutable.ArrayBuffer[V], v: V) => { c += v; c },
          (c1: mutable.ArrayBuffer[V], c2: mutable.ArrayBuffer[V]) => { c1 ++= c2; c1 }
        ).asInstanceOf[RDD[(K, Iterable[V])]]
    }
    • 适用场景:适合需要按键分组、无聚合的场景,但由于需要把所有键的值都传输到驱动端,数据量大时可能导致内存问题。
  • 示例

    python 复制代码
    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.groupByKey().mapValues(list)
    print(result.collect())

    输出[('a', [1, 3]), ('b', [2])]


2. reduceByKey

  • 功能:基于给定的二元函数(如加法)对每个键的值进行聚合。

  • 源码分析
    reduceByKey 底层也是基于 combineByKeyWithClassTag 方法进行处理,但与 groupByKey 不同的是,它在每个分区内执行局部聚合,再进行全局聚合,减少了数据传输。

    scala 复制代码
    def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {
        combineByKeyWithClassTag[V]((v: V) => v, func, func)
    }
    • 适用场景 :适用于需要对数据进行聚合计算的场景,能够有效减少 shuffle 数据量。
  • 示例

    python 复制代码
    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.reduceByKey(lambda x, y: x + y)
    print(result.collect())

    输出[('a', 4), ('b', 2)]


3. foldByKey

  • 功能 :与 reduceByKey 类似,但提供了初始值,分区内和分区间合并时都使用这个初始值。

  • 源码分析
    foldByKey 的实现中调用了 aggregateByKey 方法,初始值会在每个分区中传递,确保聚合逻辑一致。

    scala 复制代码
    def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)] = {
        aggregateByKey(zeroValue)(func, func)
    }
    • 适用场景:当聚合操作需要一个初始值时使用,如从初始值开始累积计算。
  • 示例

    python 复制代码
    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.foldByKey(0, lambda x, y: x + y)
    print(result.collect())

    输出[('a', 4), ('b', 2)]


4. aggregateByKey

  • 功能:支持更复杂的聚合操作,提供了分区内和分区间不同的聚合函数。

  • 源码分析
    aggregateByKey 是最通用的聚合算子,调用了 combineByKeyWithClassTag 方法来控制分区内和分区间的计算方式。

    scala 复制代码
    def aggregateByKey[U: ClassTag](zeroValue: U)(
        seqOp: (U, V) => U,
        combOp: (U, U) => U): RDD[(K, U)] = {
        // Implementation detail here
    }
    • 适用场景:适合复杂的聚合逻辑需求,例如在分区内和分区间使用不同的函数。
  • 示例

    python 复制代码
    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.aggregateByKey(0,
                                lambda x, y: x + y,   # 分区内加和
                                lambda x, y: x + y)   # 分区间加和
    print(result.collect())

    输出[('a', 4), ('b', 2)]


区别总结

  • groupByKey:按键分组返回集合,适合分组场景,但内存消耗大。
  • reduceByKey:按键聚合,没有初始值,适用于聚合计算。
  • foldByKey:按键聚合,支持初始值,适合自定义累加计算。
  • aggregateByKey:最灵活的聚合算子,适合复杂逻辑。
相关推荐
计算机毕设残哥1 小时前
完整技术栈分享:基于Hadoop+Spark的在线教育投融资大数据可视化分析系统
大数据·hadoop·python·信息可视化·spark·计算机毕设·计算机毕业设计
计算机源码社16 小时前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
码界筑梦坊17 小时前
135-基于Spark的抖音数据分析热度预测系统
大数据·python·数据分析·spark·毕业设计·echarts
计算机毕业设计木哥1 天前
计算机毕设大数据选题推荐 基于spark+Hadoop+python的贵州茅台股票数据分析系统【源码+文档+调试】
大数据·hadoop·python·计算机网络·spark·课程设计
请提交用户昵称2 天前
Spark运行架构
大数据·架构·spark
计算机毕业设计木哥2 天前
基于大数据spark的医用消耗选品采集数据可视化分析系统【Hadoop、spark、python】
大数据·hadoop·python·信息可视化·spark·课程设计
卖寂寞的小男孩2 天前
Spark执行计划与UI分析
ui·ajax·spark
计算机毕设-小月哥3 天前
【限时分享:Hadoop+Spark+Vue技术栈电信客服数据分析系统完整实现方案
大数据·vue.js·hadoop·python·信息可视化·spark·计算机毕业设计
wyn200011285 天前
Spark学习(Pyspark)
spark
计算机毕业编程指导师6 天前
毕业设计选题推荐之基于Spark的在线教育投融数据可视化分析系统 |爬虫|大数据|大屏|预测|深度学习|数据分析|数据挖掘
大数据·hadoop·python·数据挖掘·spark·毕业设计·在线教育投融