损失函数

MSE损失函数

KL 散度

KL散度,有时候也叫KL距离,一般被用于计算两个分布之间的不同

交叉熵分类损失函数

本质上是一种对数似然函数,可用于二分类和多分类任务中

二分类问题

python 复制代码
loss = -torch.sum(y * torch.log(probs) + (1 - y) * torch.log(1 - probs)).mean()

多分类问题

python 复制代码
def cross_entropy(x: torch.Tensor, y: torch.Tensor):
    # x: (batch_size, num_classes) 经过softmax得到概率
    # y: (batch_size, num_classes) one-hot形式
    return -torch.sum(y * torch.log(x), dim=1).mean()

if __name__ == "__main__":
    input = torch.randn(4, 3)
    probs = softmax(input)
    labels = torch.tensor([0, 1, 2, 1], dtype=torch.int64)
    targets = F.one_hot(labels, num_classes = 3)
    # 不能将概率作为输入
    loss1 = F.cross_entropy(input, labels)
    # 需要将label转化为one-hot形式
    loss2 = cross_entropy(probs, targets)

focal loss

  • 当正负样本数量及其不平衡时,可以考虑使用FocalLoss调节正负样本的loss权重。
  • 当训练样本的难易程度不平衡时,可以考虑使用FocalLoss调节难易样本的loss权重
  • 预测概率距离真值越远,则样本越难
  • alpha为超参数用于调节正负样本权重,gamma为超参数用于调节难易样本权重

回归损失函数

在目标检测中用于优化边缘框的坐标

l1 loss

l2 loss

smooth l1 loss

存在问题

  • 在计算目标检测的 Bounding Box Loss 时,会独立地分别求出4个点的Loss,然后进行相加得到最终的Bounding Box Loss,这种做法的假设是4个点是相互独立的,实际是有一定相关性的。
  • 实际评价框检测的指标是使用IoU,而IoU和Smooth L1是不等价的,多个检测框可能有相同大小的Smooth L1 Loss,但IoU可能差异很大
相关推荐
Elastic 中国社区官方博客16 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上40 分钟前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy42 分钟前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
艾思科蓝 AiScholar1 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
watersink2 小时前
面试题库笔记
大数据·人工智能·机器学习
Yuleave2 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理
数字化综合解决方案提供商2 小时前
【Rate Limiting Advanced插件】赋能AI资源高效分配
大数据·人工智能
一只码代码的章鱼2 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习
周杰伦_Jay3 小时前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
SpikeKing3 小时前
LLM - 大模型 ScallingLaws 的指导模型设计与实验环境(PLM) 教程(4)
人工智能·llm·transformer·plm·scalinglaws