损失函数

MSE损失函数

KL 散度

KL散度,有时候也叫KL距离,一般被用于计算两个分布之间的不同

交叉熵分类损失函数

本质上是一种对数似然函数,可用于二分类和多分类任务中

二分类问题

python 复制代码
loss = -torch.sum(y * torch.log(probs) + (1 - y) * torch.log(1 - probs)).mean()

多分类问题

python 复制代码
def cross_entropy(x: torch.Tensor, y: torch.Tensor):
    # x: (batch_size, num_classes) 经过softmax得到概率
    # y: (batch_size, num_classes) one-hot形式
    return -torch.sum(y * torch.log(x), dim=1).mean()

if __name__ == "__main__":
    input = torch.randn(4, 3)
    probs = softmax(input)
    labels = torch.tensor([0, 1, 2, 1], dtype=torch.int64)
    targets = F.one_hot(labels, num_classes = 3)
    # 不能将概率作为输入
    loss1 = F.cross_entropy(input, labels)
    # 需要将label转化为one-hot形式
    loss2 = cross_entropy(probs, targets)

focal loss

  • 当正负样本数量及其不平衡时,可以考虑使用FocalLoss调节正负样本的loss权重。
  • 当训练样本的难易程度不平衡时,可以考虑使用FocalLoss调节难易样本的loss权重
  • 预测概率距离真值越远,则样本越难
  • alpha为超参数用于调节正负样本权重,gamma为超参数用于调节难易样本权重

回归损失函数

在目标检测中用于优化边缘框的坐标

l1 loss

l2 loss

smooth l1 loss

存在问题

  • 在计算目标检测的 Bounding Box Loss 时,会独立地分别求出4个点的Loss,然后进行相加得到最终的Bounding Box Loss,这种做法的假设是4个点是相互独立的,实际是有一定相关性的。
  • 实际评价框检测的指标是使用IoU,而IoU和Smooth L1是不等价的,多个检测框可能有相同大小的Smooth L1 Loss,但IoU可能差异很大
相关推荐
是十一月末几秒前
Opencv实现图片的边界填充和阈值处理
人工智能·python·opencv·计算机视觉
机智的叉烧33 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀36 分钟前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技012 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手3 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20213 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight3 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说3 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu3 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理