昇思大模型平台打卡体验活动:项目1基于MindSpore实现BERT对话情绪识别

基于MindSpore实现BERT对话情绪识别

1. 模型简介

BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年末开发并发布的一种新型语言模型,基于Transformer架构中的Encoder,并且具有双向编码的特性。BERT在自然语言处理任务中广泛应用,如问答、命名实体识别、自然语言推理和文本分类等。

BERT的主要创新在于其预训练方法,它结合了Masked Language Model (MLM)和Next Sentence Prediction(NSP)两种任务来捕捉词语级和句子级的语义表示。

  • Masked Language Model:在训练过程中,BERT会随机选择15%的词汇进行Mask操作。这些被Mask的词汇会通过三种方式处理:

    • 80%的词汇被直接替换为特殊的[Mask]标记;
    • 10%的词汇会被替换成随机的新词;
    • 10%的词汇则保持不变。
  • Next Sentence Prediction:该任务旨在让BERT理解两个句子之间的关系。训练输入包括两个句子A和B,其中B有一半的概率是A的下一句,BERT模型的任务是预测B是否为A的下一句。

BERT预训练完成后,会保存其Embedding表和Transformer权重(例如BERT-BASE保存12层的Transformer权重,BERT-LARGE保存24层的Transformer权重)。预训练后的BERT模型可以用于Fine-tuning,完成文本分类、相似度判断、阅读理解等下游任务。

在对话情绪识别(Emotion Detection)任务中,模型的目标是分析用户在智能对话中的情绪,自动判断情绪类别(如积极、消极、中性),并给出置信度。该技术可广泛应用于聊天、客服等场景,帮助企业提升对话质量、改善用户体验,并降低人工质检成本。

以下示例展示了如何使用BERT进行情感分类任务。

2. 数据集

我们使用一个已标注并经过分词预处理的中文机器人聊天数据集,数据集由百度飞桨团队提供。每条数据包含两列,第一列为情绪标签(0代表消极、1代表中性、2代表积极),第二列为以空格分隔的中文分词文本。数据文件为UTF-8编码。

示例数据如下:

label--text_a
0--谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?
1--我有事等会儿就回来和你聊
2--我见到你很高兴谢谢你帮我

3. 数据处理与模型训练

数据处理包括数据集的读取、格式转换、文本的Tokenize处理以及Padding操作。以下展示了数据处理过程的代码和示意图。

1731232658032)

我们使用封装好的trainer来简化训练流程,以下是训练过程的代码示例:

在完成训练后,模型能够在测试集上进行推理,并输出每个文本的情绪预测结果。训练过程非常快速,以下为训练完成后的代码和结果展示:

最后,我们可以加载自己的数据并进行推理,以下是推理结果的展示:

相关推荐
机智的叉烧27 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀30 分钟前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技012 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手3 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20213 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight3 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说3 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu3 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
PowerBI学谦4 小时前
使用copilot轻松将电子邮件转为高效会议
人工智能·copilot