计算机视觉-单应矩阵

1.基本概念

单应性矩阵Homogeneous 是射影几何中的一个术语,又称之为射影变换。当相机发生纯旋转,或者若场景中的特征点都落在同一平面上(比如墙,地面等)时,计算基础矩阵F 或者本质矩阵E 往往会有很大的误差(因为此时平移量t特别小),此时需要用到单应矩阵H. 单应矩阵主要用来解决两个问题:

(1)表述真实世界中一个平面与他对应图像的透视变换

(2)通过透视变换实现图像从一个视图变换到另一个视图的转换。

把一个射影平面上的点(三维齐次矢量)映射到另一个射影平面上,并且把直接射影为直线,具有保线性,总的来说单应是关于三维齐次矢量的一种线性变换,如图所示,两个平面之间的关系可以用一个3*3的非奇异矩阵H表示x1=Hx2,H表示单应矩阵,定义了八个自由度。这种关系定义为平面单应性

使用单应矩阵H 时假设所有像素都在一个平面上,单应矩阵H 直接描绘了图像坐标之间的关系,也就是第一帧图像是怎么线性扭曲到第二帧图像的。具体的,图像1中的像素

与图像2中对应的像素满足:

将单应矩阵H展开

2.求解方法

复制代码
Mat cv::findHomography 	( 	InputArray  	srcPoints,
		InputArray  	dstPoints,
		int  	method = 0,
		double  	ransacReprojThreshold = 3,
		OutputArray  	mask = noArray(),
		const int  	maxIters = 2000,
		const double  	confidence = 0.995 
	) 	

参数:

srcPoints:源平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

dstPoints:目标平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

method:计算单应矩阵所使用的方法。方法如下:

  • 0 - 利用所有点的常规方法
  • RANSAC - RANSAC-基于RANSAC的鲁棒算法
  • LMEDS - 最小中值鲁棒算法
  • RHO - PROSAC-基于PROSAC的鲁棒算法

ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法)

mask:可选输出掩码矩阵,通常由鲁棒算法(RANSAC或LMEDS)设置.

maxIters:RANSAC算法的最大迭代次数,默认值为2000。

confidence:可信度值,取值范围为0到1.

3 参考博客

视觉SLAM:单应矩阵_slam建图和单应性矩阵-CSDN博客

https://zhuanlan.zhihu.com/p/678088930

相关推荐
麻雀无能为力27 分钟前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人41 分钟前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法42 分钟前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
ζั͡山 ั͡有扶苏 ั͡✾1 小时前
AI辅助编程工具对比分析:Cursor、Copilot及其他主流选择
人工智能·copilot·cursor
东临碣石821 小时前
【AI论文】数学推理能否提升大型语言模型(LLM)的通用能力?——探究大型语言模型推理能力的可迁移性
人工智能·语言模型·自然语言处理
未来智慧谷1 小时前
微软医疗AI诊断系统发布 多智能体协作实现疑难病例分析
人工智能·microsoft·医疗ai
野生技术架构师1 小时前
简述MCP的原理-AI时代的USB接口
人工智能·microsoft
Allen_LVyingbo2 小时前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗
jndingxin2 小时前
OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
人工智能·opencv·dnn
NAGNIP2 小时前
一文搞懂FlashAttention怎么提升速度的?
人工智能·算法