计算机视觉-单应矩阵

1.基本概念

单应性矩阵Homogeneous 是射影几何中的一个术语,又称之为射影变换。当相机发生纯旋转,或者若场景中的特征点都落在同一平面上(比如墙,地面等)时,计算基础矩阵F 或者本质矩阵E 往往会有很大的误差(因为此时平移量t特别小),此时需要用到单应矩阵H. 单应矩阵主要用来解决两个问题:

(1)表述真实世界中一个平面与他对应图像的透视变换

(2)通过透视变换实现图像从一个视图变换到另一个视图的转换。

把一个射影平面上的点(三维齐次矢量)映射到另一个射影平面上,并且把直接射影为直线,具有保线性,总的来说单应是关于三维齐次矢量的一种线性变换,如图所示,两个平面之间的关系可以用一个3*3的非奇异矩阵H表示x1=Hx2,H表示单应矩阵,定义了八个自由度。这种关系定义为平面单应性

使用单应矩阵H 时假设所有像素都在一个平面上,单应矩阵H 直接描绘了图像坐标之间的关系,也就是第一帧图像是怎么线性扭曲到第二帧图像的。具体的,图像1中的像素

与图像2中对应的像素满足:

将单应矩阵H展开

2.求解方法

复制代码
Mat cv::findHomography 	( 	InputArray  	srcPoints,
		InputArray  	dstPoints,
		int  	method = 0,
		double  	ransacReprojThreshold = 3,
		OutputArray  	mask = noArray(),
		const int  	maxIters = 2000,
		const double  	confidence = 0.995 
	) 	

参数:

srcPoints:源平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

dstPoints:目标平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

method:计算单应矩阵所使用的方法。方法如下:

  • 0 - 利用所有点的常规方法
  • RANSAC - RANSAC-基于RANSAC的鲁棒算法
  • LMEDS - 最小中值鲁棒算法
  • RHO - PROSAC-基于PROSAC的鲁棒算法

ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法)

mask:可选输出掩码矩阵,通常由鲁棒算法(RANSAC或LMEDS)设置.

maxIters:RANSAC算法的最大迭代次数,默认值为2000。

confidence:可信度值,取值范围为0到1.

3 参考博客

视觉SLAM:单应矩阵_slam建图和单应性矩阵-CSDN博客

https://zhuanlan.zhihu.com/p/678088930

相关推荐
珠海西格电力5 分钟前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
Black蜡笔小新6 分钟前
视频汇聚平台EasyCVR打造校园消防智能监管新防线
网络·人工智能·音视频
珠海西格电力科技7 分钟前
双碳目标下,微电网为何成为能源转型核心载体?
网络·人工智能·物联网·云计算·智慧城市·能源
2501_9418372613 分钟前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
HyperAI超神经19 分钟前
加州大学构建基于全连接神经网络的片上光谱仪,在芯片级尺寸上实现8纳米的光谱分辨率
人工智能·深度学习·神经网络·机器学习·ai编程
badfl44 分钟前
AI漫剧技术方案拆解:NanoBanana+Sora视频生成全流程
人工智能·ai·ai作画
杭州杭州杭州1 小时前
李沐动手学深度学习笔记(4)---物体检测基础
人工智能·笔记·深度学习
小二·1 小时前
Python Web 开发进阶实战(终章):从单体应用到 AI 原生生态 —— 45 篇技术演进全景与未来开发者生存指南
前端·人工智能·python
秋名山大前端2 小时前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
集和诚JHCTECH2 小时前
边缘智能,触手可及|BRAV-7821高能效AI边缘计算系统正式发布
大数据·人工智能·边缘计算