计算机视觉-单应矩阵

1.基本概念

单应性矩阵Homogeneous 是射影几何中的一个术语,又称之为射影变换。当相机发生纯旋转,或者若场景中的特征点都落在同一平面上(比如墙,地面等)时,计算基础矩阵F 或者本质矩阵E 往往会有很大的误差(因为此时平移量t特别小),此时需要用到单应矩阵H. 单应矩阵主要用来解决两个问题:

(1)表述真实世界中一个平面与他对应图像的透视变换

(2)通过透视变换实现图像从一个视图变换到另一个视图的转换。

把一个射影平面上的点(三维齐次矢量)映射到另一个射影平面上,并且把直接射影为直线,具有保线性,总的来说单应是关于三维齐次矢量的一种线性变换,如图所示,两个平面之间的关系可以用一个3*3的非奇异矩阵H表示x1=Hx2,H表示单应矩阵,定义了八个自由度。这种关系定义为平面单应性

使用单应矩阵H 时假设所有像素都在一个平面上,单应矩阵H 直接描绘了图像坐标之间的关系,也就是第一帧图像是怎么线性扭曲到第二帧图像的。具体的,图像1中的像素

与图像2中对应的像素满足:

将单应矩阵H展开

2.求解方法

复制代码
Mat cv::findHomography 	( 	InputArray  	srcPoints,
		InputArray  	dstPoints,
		int  	method = 0,
		double  	ransacReprojThreshold = 3,
		OutputArray  	mask = noArray(),
		const int  	maxIters = 2000,
		const double  	confidence = 0.995 
	) 	

参数:

srcPoints:源平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

dstPoints:目标平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

method:计算单应矩阵所使用的方法。方法如下:

  • 0 - 利用所有点的常规方法
  • RANSAC - RANSAC-基于RANSAC的鲁棒算法
  • LMEDS - 最小中值鲁棒算法
  • RHO - PROSAC-基于PROSAC的鲁棒算法

ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法)

mask:可选输出掩码矩阵,通常由鲁棒算法(RANSAC或LMEDS)设置.

maxIters:RANSAC算法的最大迭代次数,默认值为2000。

confidence:可信度值,取值范围为0到1.

3 参考博客

视觉SLAM:单应矩阵_slam建图和单应性矩阵-CSDN博客

https://zhuanlan.zhihu.com/p/678088930

相关推荐
杭州泽沃电子科技有限公司11 分钟前
面对风霜雨雪雷电:看在线监测如何为架空线路筑牢安全网
运维·人工智能·在线监测·智能监测
小真zzz11 分钟前
Nano Banana Pro与Banana系产品全面解析,深度集成Nano Banana Pro的编辑能力标杆
人工智能·ai·powerpoint·ppt·nano banana pro
睡醒了叭12 分钟前
图像分割-深度学习-FCN模型
人工智能·深度学习·计算机视觉
汤姆yu37 分钟前
基于深度学习的摔倒检测系统
人工智能·深度学习
qq_12498707531 小时前
基于深度学习的蘑菇种类识别系统的设计与实现(源码+论文+部署+安装)
java·大数据·人工智能·深度学习·cnn·cnn算法
wp123_11 小时前
射频设计中的无磁空心电感抉择:Coilcraft A01TKLC VS 国产替代TONEVEE FTA01-2N5K
人工智能·制造
泰迪智能科技1 小时前
新疆高校大数据人工智能实验室建设案例
大数据·人工智能
540_5401 小时前
ADVANCE Day32
人工智能·python·机器学习
STLearner1 小时前
AAAI 2026 | 图基础模型(GFM)&文本属性图(TAG)高分论文
人工智能·python·深度学习·神经网络·机器学习·数据挖掘·图论
Light601 小时前
数据战争的星辰大海:从纷争到融合,五大核心架构的终局之战与AI新纪元
大数据·人工智能·数据治理·湖仓一体·数据中台·数据架构·选型策略