计算机视觉-单应矩阵

1.基本概念

单应性矩阵Homogeneous 是射影几何中的一个术语,又称之为射影变换。当相机发生纯旋转,或者若场景中的特征点都落在同一平面上(比如墙,地面等)时,计算基础矩阵F 或者本质矩阵E 往往会有很大的误差(因为此时平移量t特别小),此时需要用到单应矩阵H. 单应矩阵主要用来解决两个问题:

(1)表述真实世界中一个平面与他对应图像的透视变换

(2)通过透视变换实现图像从一个视图变换到另一个视图的转换。

把一个射影平面上的点(三维齐次矢量)映射到另一个射影平面上,并且把直接射影为直线,具有保线性,总的来说单应是关于三维齐次矢量的一种线性变换,如图所示,两个平面之间的关系可以用一个3*3的非奇异矩阵H表示x1=Hx2,H表示单应矩阵,定义了八个自由度。这种关系定义为平面单应性

使用单应矩阵H 时假设所有像素都在一个平面上,单应矩阵H 直接描绘了图像坐标之间的关系,也就是第一帧图像是怎么线性扭曲到第二帧图像的。具体的,图像1中的像素

与图像2中对应的像素满足:

将单应矩阵H展开

2.求解方法

复制代码
Mat cv::findHomography 	( 	InputArray  	srcPoints,
		InputArray  	dstPoints,
		int  	method = 0,
		double  	ransacReprojThreshold = 3,
		OutputArray  	mask = noArray(),
		const int  	maxIters = 2000,
		const double  	confidence = 0.995 
	) 	

参数:

srcPoints:源平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

dstPoints:目标平面中点的坐标矩阵,可以是CV_32FC2类型,也可以是vector类型

method:计算单应矩阵所使用的方法。方法如下:

  • 0 - 利用所有点的常规方法
  • RANSAC - RANSAC-基于RANSAC的鲁棒算法
  • LMEDS - 最小中值鲁棒算法
  • RHO - PROSAC-基于PROSAC的鲁棒算法

ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法)

mask:可选输出掩码矩阵,通常由鲁棒算法(RANSAC或LMEDS)设置.

maxIters:RANSAC算法的最大迭代次数,默认值为2000。

confidence:可信度值,取值范围为0到1.

3 参考博客

视觉SLAM:单应矩阵_slam建图和单应性矩阵-CSDN博客

https://zhuanlan.zhihu.com/p/678088930

相关推荐
CareyWYR16 分钟前
每周AI论文速递(2506202-250606)
人工智能
YYXZZ。。20 分钟前
PyTorch——优化器(9)
pytorch·深度学习·计算机视觉
点云SLAM20 分钟前
PyTorch 中contiguous函数使用详解和代码演示
人工智能·pytorch·python·3d深度学习·contiguous函数·张量内存布局优化·张量操作
小天才才31 分钟前
【自然语言处理】大模型时代的数据标注(主动学习)
人工智能·机器学习·语言模型·自然语言处理
音程34 分钟前
预训练语言模型T5-11B的简要介绍
人工智能·语言模型·自然语言处理
人肉推土机1 小时前
AI Agent 架构设计:ReAct 与 Self-Ask 模式对比与分析
人工智能·大模型·llm·agent
新知图书1 小时前
OpenCV为图像添加边框
人工智能·opencv·计算机视觉
大模型真好玩1 小时前
可视化神器WandB,大模型训练的必备工具!
人工智能·python·mcp
张较瘦_1 小时前
[论文阅读] 人工智能 | 当AI遇见绿色软件工程:可持续AI实践的研究新方向
人工智能
Jamence2 小时前
多模态大语言模型arxiv论文略读(110)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记