分布式cap理论学习

【分布式】CAP理论详解

一致性(Consistency)

代表数据在任何时刻,任何分布式节点,看到的都是符合预期的。有点类似于幂等,无论访问哪个节点,得到结果数据一致。

可用性(Availability)

强调的是任意时刻一定能读到数据,不能有短暂的服务不可用,至于读取的数据是新值还是旧值都不影响,但一定要能成功访问。

分区容错性(Partition Tolerance)

数据被划分存储在多个节点,即使一个节点不可用了,仍能从其他节点访问数据。官话:在网络中断,消息丢失情况下,系统照样能够工作。

结论

首先,cap三个不同同时满足。

  • ca的场景是 读写场景都在主节点上,保证了数据即刻可以获取同时多次获取数据都是一致的。但是当主节点不可服务的时候,整个分布式集群将变的不可用
  • cp的场景是 当发生数据更新时,需在主从节点之间节点同步,节点会有短暂时间不可用的情况
  • ap的场景是 当发生数据更新时,主从节点可以即刻被访问并且能保证分布式节点可以被访问。但会出现数据不一致的问题。

对于分布式的场景,分区容错性(Partition-tolerance) 是必要的选择,否则分布式集群的意义就不大了。

总的来说,没有绝对完美的解决方案,只有合适业务的理论指导。

相关推荐
上海锟联科技15 小时前
DAS 系统 250MSPS 是否足够?——来自上海锟联科技的专业解析
分布式·科技·分布式光纤传感·光频域反射·das
那就学有所成吧(˵¯͒¯͒˵)19 小时前
大数据项目(一):Hadoop 云网盘管理系统开发实践
大数据·hadoop·分布式
徐先生 @_@|||1 天前
Spark DataFrame常见的Transformation和Actions详解
大数据·分布式·spark
Gofarlic_oms11 天前
通过Kisssoft API接口实现许可证管理自动化集成
大数据·运维·人工智能·分布式·架构·自动化
走遍西兰花.jpg1 天前
spark配置
大数据·分布式·spark
hellojackjiang20111 天前
如何保障分布式IM聊天系统的消息可靠性(即消息不丢)
分布式·网络安全·架构·信息与通信
BYSJMG1 天前
计算机毕业设计选题推荐:基于Hadoop的城市交通数据可视化系统
大数据·vue.js·hadoop·分布式·后端·信息可视化·课程设计
一只大袋鼠1 天前
分布式 ID 生成:雪花算法原理、实现与 MyBatis-Plus 实战
分布式·算法·mybatis
三水不滴1 天前
对比一下RabbitMQ和RocketMQ
经验分享·笔记·分布式·rabbitmq·rocketmq
麦兜*1 天前
深入解析分布式数据库TiDB核心架构:基于Raft一致性协议与HTAP混合负载实现金融级高可用与实时分析的工程实践
数据库·分布式·tidb