分布式cap理论学习

【分布式】CAP理论详解

一致性(Consistency)

代表数据在任何时刻,任何分布式节点,看到的都是符合预期的。有点类似于幂等,无论访问哪个节点,得到结果数据一致。

可用性(Availability)

强调的是任意时刻一定能读到数据,不能有短暂的服务不可用,至于读取的数据是新值还是旧值都不影响,但一定要能成功访问。

分区容错性(Partition Tolerance)

数据被划分存储在多个节点,即使一个节点不可用了,仍能从其他节点访问数据。官话:在网络中断,消息丢失情况下,系统照样能够工作。

结论

首先,cap三个不同同时满足。

  • ca的场景是 读写场景都在主节点上,保证了数据即刻可以获取同时多次获取数据都是一致的。但是当主节点不可服务的时候,整个分布式集群将变的不可用
  • cp的场景是 当发生数据更新时,需在主从节点之间节点同步,节点会有短暂时间不可用的情况
  • ap的场景是 当发生数据更新时,主从节点可以即刻被访问并且能保证分布式节点可以被访问。但会出现数据不一致的问题。

对于分布式的场景,分区容错性(Partition-tolerance) 是必要的选择,否则分布式集群的意义就不大了。

总的来说,没有绝对完美的解决方案,只有合适业务的理论指导。

相关推荐
Lansonli13 分钟前
大数据Spark(六十三):RDD-Resilient Distributed Dataset
大数据·分布式·spark
BYSJMG29 分钟前
计算机毕业设计选题:基于Spark+Hadoop的健康饮食营养数据分析系统【源码+文档+调试】
大数据·vue.js·hadoop·分布式·spark·django·课程设计
JAVA学习通33 分钟前
【RabbitMQ】----RabbitMQ 的7种工作模式
分布式·rabbitmq
励志成为糕手2 小时前
Hadoop进程:深入理解分布式计算引擎的核心机制
大数据·hadoop·分布式·mapreduce·yarn
掘金-我是哪吒2 小时前
分布式微服务系统架构第170集:Kafka消费者并发-多节点消费-可扩展性
分布式·微服务·架构·kafka·系统架构
何双新2 小时前
第 3 讲:KAFKA生产者(Producer)详解
分布式·kafka·linq
Heliotrope_Sun2 小时前
RabbitMQ
分布式·rabbitmq
KIDAKN3 小时前
Redis 分布式锁
数据库·redis·分布式
KIDAKN3 小时前
RabbitMQ 工作模式
分布式·rabbitmq
百思可瑞教育3 小时前
ActiveMQ、RocketMQ、RabbitMQ、Kafka 的全面对比分析
vue.js·分布式·rabbitmq·rocketmq·activemq·北京百思可瑞教育·百思可瑞教育