分布式cap理论学习

【分布式】CAP理论详解

一致性(Consistency)

代表数据在任何时刻,任何分布式节点,看到的都是符合预期的。有点类似于幂等,无论访问哪个节点,得到结果数据一致。

可用性(Availability)

强调的是任意时刻一定能读到数据,不能有短暂的服务不可用,至于读取的数据是新值还是旧值都不影响,但一定要能成功访问。

分区容错性(Partition Tolerance)

数据被划分存储在多个节点,即使一个节点不可用了,仍能从其他节点访问数据。官话:在网络中断,消息丢失情况下,系统照样能够工作。

结论

首先,cap三个不同同时满足。

  • ca的场景是 读写场景都在主节点上,保证了数据即刻可以获取同时多次获取数据都是一致的。但是当主节点不可服务的时候,整个分布式集群将变的不可用
  • cp的场景是 当发生数据更新时,需在主从节点之间节点同步,节点会有短暂时间不可用的情况
  • ap的场景是 当发生数据更新时,主从节点可以即刻被访问并且能保证分布式节点可以被访问。但会出现数据不一致的问题。

对于分布式的场景,分区容错性(Partition-tolerance) 是必要的选择,否则分布式集群的意义就不大了。

总的来说,没有绝对完美的解决方案,只有合适业务的理论指导。

相关推荐
Java程序之猿22 分钟前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰1 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
节点。csn3 小时前
Hadoop yarn安装
大数据·hadoop·分布式
NiNg_1_2344 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式
隔着天花板看星星5 小时前
Spark-Streaming集成Kafka
大数据·分布式·中间件·spark·kafka
技术路上的苦行僧9 小时前
分布式专题(8)之MongoDB存储原理&多文档事务详解
数据库·分布式·mongodb
龙哥·三年风水10 小时前
workman服务端开发模式-应用开发-后端api推送修改二
分布式·gateway·php
小小工匠10 小时前
分布式协同 - 分布式事务_2PC & 3PC解决方案
分布式·分布式事务·2pc·3pc
闯闯的日常分享13 小时前
分布式锁的原理分析
分布式
太阳伞下的阿呆13 小时前
kafka常用命令(持续更新)
分布式·kafka