论文阅读:Mixture-of-Agents Enhances Large Language Model Capabilities

一、简介

旨在利用多个 LLM 的专业知识增强自然语言理解和生成任务的能力。

提出了一种新方法,通过代理混合 (MoA) 方法利用多个 LLM 在不同专业方面的优势。即一个分层的 MoA 架构,其中每一层都包含多个 LLM 代理。每个代理都将上一层代理的所有输出作为生成其响应的辅助信息。MoAmodels 在 AlpacaEval 2.0、MT-Bench 和 FLASK 上实现了最先进的性能,超过了 GPT-4 Omni。

创新点

(1) 提出了一个 Mixture-of-Agents 框架,旨在利用多个 LLM 的优势,从而提高它们的推理和语言生成能力。

(2) 语言模型协作性的发现:即 LLM 之间的遗传协作性,其中模型在可以访问其他模型的输出时往往会产生更高质量的响应,即使这些输出的质量较低。

二、模型

为了从多个LLM中获得最佳结果,需要准确描述不同的模型在写作过程中的优点。可以将模型分为两个不同的角色

Proposer:生成有用的响应以供其他模型参考使用。作为proposer角色的模型不一定产生高分回答,但是必要条件是提供更多的上下文和观点,最终在被聚合器使用时有助于更好的最终回答。

Aggregator:将其他模型的响应合成到单一、高质量输出的模型。

聚合器获得的模型输出和prompt

三、实验

**benchmark:**主要评估 AlpacaEval 2.0上的模型,此外,还在 MT-Bench 上进行了评估

**model:**Qwen1.5-110B-Chat、Qwen1.572B-Chat、WizardLM-8x22B、LLaMA-3-70B-Instruct、Mixtral-8x22B-v0.1、dbrx-instruct。构建了 3 个 MoA 层,并在每个 MoA 层中使用相同的模型集。使用 Qwen1.5-110BChat 作为最后一层的聚合器。

另外开发了一个名为 MoA w/ GPT-4o 的变体,它通过使用 GPT-4o 作为最终 MoA 层中的聚合器,以优先考虑高质量输出。

另一个变体 MoA-Lite 强调成本效益。它使用与 proposer 相同的模型集,但仅包含 2 个 MoA 层,使用 Qwen1.5-72B-Chat 作为聚合器。

所有推理都通过 Together Inference Endpoint 运行。

相关推荐
禁默1 天前
基于CANN的ops-cv仓库-多模态场景理解与实践
人工智能·cann
禁默1 天前
【硬核入门】无需板卡也能造 AI 算子?深度玩转 CANN ops-math 通用数学库
人工智能·aigc·cann
敏叔V5871 天前
AI智能体的工具学习进阶:零样本API理解与调用
人工智能·学习
徐小夕@趣谈前端1 天前
拒绝重复造轮子?我们偏偏花365天,用Vue3写了款AI协同的Word编辑器
人工智能·编辑器·word
阿里云大数据AI技术1 天前
全模态、多引擎、一体化,阿里云DLF3.0构建Data+AI驱动的智能湖仓平台
人工智能·阿里云·云计算
陈天伟教授1 天前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理
池央1 天前
CANN GE 深度解析:图编译器的核心优化策略、执行流调度与模型下沉技术原理
人工智能·ci/cd·自动化
七月稻草人1 天前
CANN ops-nn:AIGC底层神经网络算力的核心优化引擎
人工智能·神经网络·aigc·cann
种时光的人1 天前
CANN仓库核心解读:ops-nn打造AIGC模型的神经网络算子核心支撑
人工智能·神经网络·aigc
晚霞的不甘1 天前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架