论文阅读:Mixture-of-Agents Enhances Large Language Model Capabilities

一、简介

旨在利用多个 LLM 的专业知识增强自然语言理解和生成任务的能力。

提出了一种新方法,通过代理混合 (MoA) 方法利用多个 LLM 在不同专业方面的优势。即一个分层的 MoA 架构,其中每一层都包含多个 LLM 代理。每个代理都将上一层代理的所有输出作为生成其响应的辅助信息。MoAmodels 在 AlpacaEval 2.0、MT-Bench 和 FLASK 上实现了最先进的性能,超过了 GPT-4 Omni。

创新点

(1) 提出了一个 Mixture-of-Agents 框架,旨在利用多个 LLM 的优势,从而提高它们的推理和语言生成能力。

(2) 语言模型协作性的发现:即 LLM 之间的遗传协作性,其中模型在可以访问其他模型的输出时往往会产生更高质量的响应,即使这些输出的质量较低。

二、模型

为了从多个LLM中获得最佳结果,需要准确描述不同的模型在写作过程中的优点。可以将模型分为两个不同的角色

Proposer:生成有用的响应以供其他模型参考使用。作为proposer角色的模型不一定产生高分回答,但是必要条件是提供更多的上下文和观点,最终在被聚合器使用时有助于更好的最终回答。

Aggregator:将其他模型的响应合成到单一、高质量输出的模型。

聚合器获得的模型输出和prompt

三、实验

**benchmark:**主要评估 AlpacaEval 2.0上的模型,此外,还在 MT-Bench 上进行了评估

**model:**Qwen1.5-110B-Chat、Qwen1.572B-Chat、WizardLM-8x22B、LLaMA-3-70B-Instruct、Mixtral-8x22B-v0.1、dbrx-instruct。构建了 3 个 MoA 层,并在每个 MoA 层中使用相同的模型集。使用 Qwen1.5-110BChat 作为最后一层的聚合器。

另外开发了一个名为 MoA w/ GPT-4o 的变体,它通过使用 GPT-4o 作为最终 MoA 层中的聚合器,以优先考虑高质量输出。

另一个变体 MoA-Lite 强调成本效益。它使用与 proposer 相同的模型集,但仅包含 2 个 MoA 层,使用 Qwen1.5-72B-Chat 作为聚合器。

所有推理都通过 Together Inference Endpoint 运行。

相关推荐
zzywxc78724 分钟前
AI在金融、医疗、教育、制造业等领域的落地案例
人工智能·机器学习·金融·prompt·流程图
zstar-_32 分钟前
【论文阅读】REFRAG:一个提升RAG解码效率的新思路
人工智能
慧一居士1 小时前
SpringBoot改造MCP服务器(StreamableHTTP)
人工智能
索迪迈科技1 小时前
安防芯片 ISP 的白平衡统计数据对图像质量有哪些影响?
人工智能·计算机视觉·白平衡
AiTop1001 小时前
腾讯推出AI CLI工具CodeBuddy,国内首家同时支持插件、IDE和CLI三种形态的AI编程工具厂商
ide·人工智能·ai·aigc·ai编程
山楂树下懒猴子2 小时前
ChatAI项目-ChatGPT-SDK组件工程
人工智能·chatgpt·junit·https·log4j·intellij-idea·mybatis
Learn Beyond Limits2 小时前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
AI360labs_atyun2 小时前
2025世界智博会,揭幕AI触手可及的科幻生活
人工智能·ai·音视频·生活
luoganttcc2 小时前
小鹏汽车 vla 算法最新进展和模型结构细节
人工智能·算法·汽车
算家计算2 小时前
面壁智能开源多模态大模型——MiniCPM-V 4.5本地部署教程:8B参数开启多模态“高刷”时代!
人工智能·开源