论文阅读:Mixture-of-Agents Enhances Large Language Model Capabilities

一、简介

旨在利用多个 LLM 的专业知识增强自然语言理解和生成任务的能力。

提出了一种新方法,通过代理混合 (MoA) 方法利用多个 LLM 在不同专业方面的优势。即一个分层的 MoA 架构,其中每一层都包含多个 LLM 代理。每个代理都将上一层代理的所有输出作为生成其响应的辅助信息。MoAmodels 在 AlpacaEval 2.0、MT-Bench 和 FLASK 上实现了最先进的性能,超过了 GPT-4 Omni。

创新点

(1) 提出了一个 Mixture-of-Agents 框架,旨在利用多个 LLM 的优势,从而提高它们的推理和语言生成能力。

(2) 语言模型协作性的发现:即 LLM 之间的遗传协作性,其中模型在可以访问其他模型的输出时往往会产生更高质量的响应,即使这些输出的质量较低。

二、模型

为了从多个LLM中获得最佳结果,需要准确描述不同的模型在写作过程中的优点。可以将模型分为两个不同的角色

Proposer:生成有用的响应以供其他模型参考使用。作为proposer角色的模型不一定产生高分回答,但是必要条件是提供更多的上下文和观点,最终在被聚合器使用时有助于更好的最终回答。

Aggregator:将其他模型的响应合成到单一、高质量输出的模型。

聚合器获得的模型输出和prompt

三、实验

**benchmark:**主要评估 AlpacaEval 2.0上的模型,此外,还在 MT-Bench 上进行了评估

**model:**Qwen1.5-110B-Chat、Qwen1.572B-Chat、WizardLM-8x22B、LLaMA-3-70B-Instruct、Mixtral-8x22B-v0.1、dbrx-instruct。构建了 3 个 MoA 层,并在每个 MoA 层中使用相同的模型集。使用 Qwen1.5-110BChat 作为最后一层的聚合器。

另外开发了一个名为 MoA w/ GPT-4o 的变体,它通过使用 GPT-4o 作为最终 MoA 层中的聚合器,以优先考虑高质量输出。

另一个变体 MoA-Lite 强调成本效益。它使用与 proposer 相同的模型集,但仅包含 2 个 MoA 层,使用 Qwen1.5-72B-Chat 作为聚合器。

所有推理都通过 Together Inference Endpoint 运行。

相关推荐
计算生物前沿23 分钟前
单细胞分析教程 | (二)标准化、特征选择、降为、聚类及可视化
人工智能·机器学习·聚类
kyle~43 分钟前
Opencv---深度学习开发
人工智能·深度学习·opencv·计算机视觉·机器人
运器1231 小时前
【一起来学AI大模型】PyTorch DataLoader 实战指南
大数据·人工智能·pytorch·python·深度学习·ai·ai编程
超龄超能程序猿1 小时前
(5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
人工智能·python·机器学习·numpy·pandas·scipy
卷福同学1 小时前
【AI编程】AI+高德MCP不到10分钟搞定上海三日游
人工智能·算法·程序员
帅次1 小时前
系统分析师-计算机系统-输入输出系统
人工智能·分布式·深度学习·神经网络·架构·系统架构·硬件架构
AndrewHZ2 小时前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
5G行业应用2 小时前
【赠书福利,回馈公号读者】《智慧城市与智能网联汽车,融合创新发展之路》
人工智能·汽车·智慧城市
悟空胆好小2 小时前
分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
网络·人工智能·科技·嵌入式硬件
探讨探讨AGV2 小时前
以科技赋能未来,科聪持续支持青年创新实践 —— 第七届“科聪杯”浙江省大学生智能机器人创意竞赛圆满落幕
人工智能·科技·机器人