【数据分析实战】(一)—— JOJO战力图

JOJO战力图

matplotlib作为一款可视化作图工具,在学习完一些简单的折线图、直方图等之后,学习雷达图的时候,我脑海里就浮现出了JOJO的替身战力图,这不就是典型的雷达图吗,接下来介绍如何使用matplotlib完成复刻jojo替身战力雷达图。

首先我们来观察一下原图长什么样子

图片中的标识用的是汉字和平假名/片假名等东方字符,默认的matplotlib不能正确显示这些字符,我们先修改字体为黑体宋体这种,此处选择黑体

PY 复制代码
plt.rcParams['font.sans-serif'] = 'SimHei'  

然后创建一个list用于存放这些维度标识符,方便后续在图中展示的时候直接读取

py 复制代码
dim =['メイド','破壊力', '成长性','精度動作性', '持続力','射程距離']

创建一个用于存放属性值的list,在matplotlib雷达图钟的属性值为0-100,白金之星的5A1C面板我们可以转换成值5个100和1个60

py 复制代码
val = [100,100,100,100,100,60]

设定雷达图的角度,即把一个圆分成几部分,此处直接利用维度的个数进行指定,endpoint=False让首尾衔接更自然

py 复制代码
angles = np.linspace(0, 2*np.pi, len(dim), endpoint=False)

将第一个数据点添加到最后一个,包括值和角度,让雷达图首尾相连

py 复制代码
val += val[:1]
angles = np.concatenate((angles, [angles[0]]))

创建雷达图

py 复制代码
# 雷达图
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
ax.fill(angles, val, color='skyblue', alpha=0.5)

ax.set_thetagrids(angles[:-1] * 180/np.pi, dim)
# ax.set_yticklabels([])  # 隐藏半径刻度标签
new_ticks = [0, 20, 40 ,60,80,100]
ax.set_rticks(new_ticks) 
# 添加标题
plt.title('空条承太郎战力', size=20, y=1.1)

完整代码如下:

py 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
# 让图片中可以显示中文
plt.rcParams['font.sans-serif'] = 'SimHei'   

dim =['メイド','破壊力', '成长性','精度動作性', '持続力','射程距離']

val = [100,100,100,100,100,60]

angles = np.linspace(0, 2*np.pi, len(dim), endpoint=False)

# 保证首尾相连
val += val[:1]
angles = np.concatenate((angles, [angles[0]]))

# 雷达图
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
ax.fill(angles, val, color='skyblue', alpha=0.5)

ax.set_thetagrids(angles[:-1] * 180/np.pi, dim)
# ax.set_yticklabels([])  # 隐藏半径刻度标签
new_ticks = [0, 20, 40 ,60,80,100]
ax.set_rticks(new_ticks) 
# 添加标题
plt.title('空条承太郎战力', size=20, y=1.1)
plt.show()

【运行结果】

相关推荐
Start_Present6 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
DREAM.ZL7 小时前
基于python的电影数据分析及可视化系统
开发语言·python·数据分析
代码骑士9 小时前
聚类(Clustering)基础知识2
机器学习·数据挖掘·聚类
大美B端工场-B端系统美颜师9 小时前
静态图表 VS 动态可视化,哪种更适合数据故事讲述?
信息可视化·数据挖掘·数据分析
青云交13 小时前
Java 大视界 -- Java 大数据在智能电网电力市场交易数据分析与策略制定中的关键作用(162)
java·大数据·数据分析·交易策略·智能电网·java 大数据·电力市场交易
葡萄成熟时_15 小时前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
mosquito_lover117 小时前
Python数据分析与可视化实战
python·数据挖掘·数据分析
QQ__176461982418 小时前
Labview信号采集与分析系统(可仿真)
数据分析·数据采集·labview
Dovis(誓平步青云)19 小时前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市
奔跑吧邓邓子19 小时前
【家政平台开发(9)】家政平台数据分析需求:从采集到可视化全攻略
数据分析·需求分析·家政平台开发