【数据分析实战】(一)—— JOJO战力图

JOJO战力图

matplotlib作为一款可视化作图工具,在学习完一些简单的折线图、直方图等之后,学习雷达图的时候,我脑海里就浮现出了JOJO的替身战力图,这不就是典型的雷达图吗,接下来介绍如何使用matplotlib完成复刻jojo替身战力雷达图。

首先我们来观察一下原图长什么样子

图片中的标识用的是汉字和平假名/片假名等东方字符,默认的matplotlib不能正确显示这些字符,我们先修改字体为黑体宋体这种,此处选择黑体

PY 复制代码
plt.rcParams['font.sans-serif'] = 'SimHei'  

然后创建一个list用于存放这些维度标识符,方便后续在图中展示的时候直接读取

py 复制代码
dim =['メイド','破壊力', '成长性','精度動作性', '持続力','射程距離']

创建一个用于存放属性值的list,在matplotlib雷达图钟的属性值为0-100,白金之星的5A1C面板我们可以转换成值5个100和1个60

py 复制代码
val = [100,100,100,100,100,60]

设定雷达图的角度,即把一个圆分成几部分,此处直接利用维度的个数进行指定,endpoint=False让首尾衔接更自然

py 复制代码
angles = np.linspace(0, 2*np.pi, len(dim), endpoint=False)

将第一个数据点添加到最后一个,包括值和角度,让雷达图首尾相连

py 复制代码
val += val[:1]
angles = np.concatenate((angles, [angles[0]]))

创建雷达图

py 复制代码
# 雷达图
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
ax.fill(angles, val, color='skyblue', alpha=0.5)

ax.set_thetagrids(angles[:-1] * 180/np.pi, dim)
# ax.set_yticklabels([])  # 隐藏半径刻度标签
new_ticks = [0, 20, 40 ,60,80,100]
ax.set_rticks(new_ticks) 
# 添加标题
plt.title('空条承太郎战力', size=20, y=1.1)

完整代码如下:

py 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
# 让图片中可以显示中文
plt.rcParams['font.sans-serif'] = 'SimHei'   

dim =['メイド','破壊力', '成长性','精度動作性', '持続力','射程距離']

val = [100,100,100,100,100,60]

angles = np.linspace(0, 2*np.pi, len(dim), endpoint=False)

# 保证首尾相连
val += val[:1]
angles = np.concatenate((angles, [angles[0]]))

# 雷达图
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
ax.fill(angles, val, color='skyblue', alpha=0.5)

ax.set_thetagrids(angles[:-1] * 180/np.pi, dim)
# ax.set_yticklabels([])  # 隐藏半径刻度标签
new_ticks = [0, 20, 40 ,60,80,100]
ax.set_rticks(new_ticks) 
# 添加标题
plt.title('空条承太郎战力', size=20, y=1.1)
plt.show()

【运行结果】

相关推荐
星云数灵11 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
STLearner12 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
电商API大数据接口开发Cris16 小时前
淘宝 API 关键词搜索接口深度解析:请求参数、签名机制与性能优化
前端·数据挖掘·api
AI_567817 小时前
Finereport如何重塑数据驱动管理
信息可视化·数据分析·云计算
roman_日积跬步-终至千里20 小时前
【模式识别与机器学习(15)】主成分分析
机器学习·信息可视化·数据分析
天天讯通1 天前
智能外呼:降运营成本、优客户体验,数据分析来助力
数据挖掘·数据分析
SelectDB技术团队1 天前
Apache Doris 在小米统一 OLAP 和湖仓一体的实践
数据仓库·数据分析·apache·数据库开发
搞科研的小刘选手1 天前
【人工智能专题】第五届人工智能与大数据国际学术研讨会 (AIBDF 2025)
大数据·人工智能·数据分析·学术会议·核心算法
红队it1 天前
【Spark+Hive】基于Spark大数据旅游景点数据分析可视化推荐系统(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
大数据·python·算法·数据分析·spark·django·echarts
咚咚王者1 天前
人工智能之数据分析 Pandas:第二章 Series
人工智能·数据分析·pandas