Llama模型文件介绍

文章目录

概要

在使用 LLaMA(Large Language Model Meta AI)权重时,通常会涉及到与模型权重存储和加载相关的文件。这些文件通常是以二进制格式存储的,具有特定的结构来支持高效的模型操作。以下以Llama-7B为例,对这些文件的详细介绍:

文件组成

1. 模型权重文件

模型权重文件包含了用于神经网络层的参数矩阵(例如权重矩阵和偏置向量)。这些参数是训练时优化得到的。

文件格式通常是 .bin 或 .pt,

如下图所示:

  • pytorch_model.bin
  • model-00001-of-00002.bin
    权重文件通常是分片存储的,如果模型较大(如 LLaMA-13B 或 LLaMA-65B),会分成多个文件
  1. 配置文件
    名为 config.json 或 model_config.json,包含模型的结构和超参数等关键信息,是加载模型时解析权重的关键文件,如:
  • 隐藏层大小
  • 注意力头数
  • 词嵌入维度
  • 层数
  1. 词汇表文件
    名为 tokenizer.json 或 vocab.json,存储模型的词汇表,用于将文本数据转换为模型的输入。
    通常与 merges.txt 配合使用,支持 Byte Pair Encoding (BPE) 或 SentencePiece 的分词方式
    tokenizer.json主要功能
  • 文本到seq的映射
    将输入文本切分成较小的片段(通常是词、子词或字符)。
    使用唯一编号(ID)对每个片段进行编码。
    例如,"Hello, LLaMA!" 转换为 [15496, 11, 12745, 0]。
  • seq到文本的逆映射
    在生成模型输出时,将模型生成的整数序列映射回文本。例如,[15496, 11, 12745, 0] 转换回 "Hello, LLaMA!"。
相关推荐
西猫雷婶3 小时前
CNN卷积计算
人工智能·神经网络·cnn
格林威5 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
倔强青铜三5 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
B站计算机毕业设计之家6 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
高工智能汽车6 小时前
棱镜观察|极氪销量遇阻?千里智驾左手服务吉利、右手对标华为
人工智能·华为
txwtech6 小时前
第6篇 OpenCV RotatedRect如何判断矩形的角度
人工智能·opencv·计算机视觉
正牌强哥6 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
倔强青铜三6 小时前
苦练Python第62天:零基础玩转CSV文件读写,csv模块实战
人工智能·python·面试
大模型真好玩6 小时前
低代码Agent开发框架使用指南(二)—Coze平台核心功能概览
人工智能·coze·deepseek
jerryinwuhan7 小时前
最短路径问题总结
开发语言·人工智能·python