Llama模型文件介绍

文章目录

概要

在使用 LLaMA(Large Language Model Meta AI)权重时,通常会涉及到与模型权重存储和加载相关的文件。这些文件通常是以二进制格式存储的,具有特定的结构来支持高效的模型操作。以下以Llama-7B为例,对这些文件的详细介绍:

文件组成

1. 模型权重文件

模型权重文件包含了用于神经网络层的参数矩阵(例如权重矩阵和偏置向量)。这些参数是训练时优化得到的。

文件格式通常是 .bin 或 .pt,

如下图所示:

  • pytorch_model.bin
  • model-00001-of-00002.bin
    权重文件通常是分片存储的,如果模型较大(如 LLaMA-13B 或 LLaMA-65B),会分成多个文件
  1. 配置文件
    名为 config.json 或 model_config.json,包含模型的结构和超参数等关键信息,是加载模型时解析权重的关键文件,如:
  • 隐藏层大小
  • 注意力头数
  • 词嵌入维度
  • 层数
  1. 词汇表文件
    名为 tokenizer.json 或 vocab.json,存储模型的词汇表,用于将文本数据转换为模型的输入。
    通常与 merges.txt 配合使用,支持 Byte Pair Encoding (BPE) 或 SentencePiece 的分词方式
    tokenizer.json主要功能
  • 文本到seq的映射
    将输入文本切分成较小的片段(通常是词、子词或字符)。
    使用唯一编号(ID)对每个片段进行编码。
    例如,"Hello, LLaMA!" 转换为 [15496, 11, 12745, 0]。
  • seq到文本的逆映射
    在生成模型输出时,将模型生成的整数序列映射回文本。例如,[15496, 11, 12745, 0] 转换回 "Hello, LLaMA!"。
相关推荐
黎燃17 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊18 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠19 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶1 天前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云1 天前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术1 天前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新1 天前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心1 天前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算1 天前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位1 天前
马斯克周末血裁xAI 500人
人工智能·ai编程