Llama模型文件介绍

文章目录

概要

在使用 LLaMA(Large Language Model Meta AI)权重时,通常会涉及到与模型权重存储和加载相关的文件。这些文件通常是以二进制格式存储的,具有特定的结构来支持高效的模型操作。以下以Llama-7B为例,对这些文件的详细介绍:

文件组成

1. 模型权重文件

模型权重文件包含了用于神经网络层的参数矩阵(例如权重矩阵和偏置向量)。这些参数是训练时优化得到的。

文件格式通常是 .bin 或 .pt,

如下图所示:

  • pytorch_model.bin
  • model-00001-of-00002.bin
    权重文件通常是分片存储的,如果模型较大(如 LLaMA-13B 或 LLaMA-65B),会分成多个文件
  1. 配置文件
    名为 config.json 或 model_config.json,包含模型的结构和超参数等关键信息,是加载模型时解析权重的关键文件,如:
  • 隐藏层大小
  • 注意力头数
  • 词嵌入维度
  • 层数
  1. 词汇表文件
    名为 tokenizer.json 或 vocab.json,存储模型的词汇表,用于将文本数据转换为模型的输入。
    通常与 merges.txt 配合使用,支持 Byte Pair Encoding (BPE) 或 SentencePiece 的分词方式
    tokenizer.json主要功能
  • 文本到seq的映射
    将输入文本切分成较小的片段(通常是词、子词或字符)。
    使用唯一编号(ID)对每个片段进行编码。
    例如,"Hello, LLaMA!" 转换为 [15496, 11, 12745, 0]。
  • seq到文本的逆映射
    在生成模型输出时,将模型生成的整数序列映射回文本。例如,[15496, 11, 12745, 0] 转换回 "Hello, LLaMA!"。
相关推荐
MobotStone7 分钟前
无代码+AI时代,为什么你仍然需要像个开发者一样思考
人工智能·算法
张较瘦_33 分钟前
[论文阅读] 人工智能 + 软件工程 | LLM辅助软件开发:需求如何转化为代码?
论文阅读·人工智能·软件工程
whabc1001 小时前
和鲸社区深度学习基础训练营2025年关卡3_Q1(1)
人工智能·深度学习
勤奋的知更鸟1 小时前
标准化模型格式ONNX介绍:打通AI模型从训练到部署的环节
人工智能·语言模型
盼小辉丶1 小时前
Transoformer实战——Transformer模型性能评估
人工智能·深度学习·transformer
极限实验室1 小时前
Coco AI 实战(二):摄入MongoDB 数据
人工智能·mongodb
AIGC包拥它2 小时前
AI教学设计助手:生成好教案的Prompt技术实战(一)
人工智能·prompt
SoFlu软件机器人2 小时前
Cursor、飞算JavaAI、GitHub Copilot、Gemini CLI 等热门 AI 开发工具合集
人工智能·github·copilot
isNotNullX3 小时前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析
Liudef063 小时前
大语言模型的极限:知识、推理与创造力的边界探析
人工智能·语言模型·自然语言处理