GPT-1.0、GPT-2.0、GPT-3.0参数对比

以下是 GPT-1.0、GPT-2.0、GPT-3.0 的模型参数对比表格:

模型 GPT-1.0 GPT-2.0 GPT-3.0
参数数量 117M 1.5B 175B
层数 12 层 12 - 48 层 96 层
嵌入维度 768 768 - 1600 12,288
注意力头数 12 12 - 25 96
上下文长度 512 1024 2048
词汇表大小 约 40,000 50,000 50,000
训练数据 BooksCorpus (约 5GB) WebText (约 40GB) 多种来源 (570GB)
显著特性 提出"预训练+微调"框架 支持多任务学习和长文本生成 强大的少样本和零样本学习能力
相关推荐
沐雪架构师1 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
struggle20253 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥3 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
Fhd-学习笔记5 小时前
《大语言模型》综述学习笔记
笔记·学习·语言模型
davenian6 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek
X.AI6666 小时前
【大模型LLM面试合集】大语言模型架构_llama系列模型
人工智能·语言模型·llama
CodeLinghu8 小时前
《LLM大语言模型+RAG实战+Langchain+ChatGLM-4+Transformer》
语言模型·langchain·transformer
pingfanren211 小时前
kimi,天工,gpt,deepseek效果对比
gpt
产品媛Gloria Deng11 小时前
分享| RL-GPT 框架通过慢agent和快agent结合提高AI解决复杂任务的能力-Arxiv
人工智能·gpt·ai·agent·ai智能体
杨江11 小时前
DB-GPT试用
gpt