JVM 性能调优

JVM 性能调优

在高性能硬件上部署程序,目前主要有两种方式:

  • 通过 64 位 JDK 来使用大内存;
  • 使用若干个 32 位虚拟机建立逻辑集群来利用硬件资源。

使用 64 位 JDK 管理大内存

堆内存变大后,虽然垃圾收集的频率减少了,但每次垃圾回收的时间变长。 如果堆内存为 14 G,那么每次 Full GC 将长达数十秒。如果 Full GC 频繁发生,那么对于一个网站来说是无法忍受的。

对于用户交互性强、对停顿时间敏感的系统,可以给 Java 虚拟机分配超大堆的前提是有把握把应用程序的 Full GC 频率控制得足够低,至少要低到不会影响用户使用。

可能面临的问题:

  • 内存回收导致的长时间停顿;
  • 现阶段,64 位 JDK 的性能普遍比 32 位 JDK 低;
  • 需要保证程序足够稳定,因为这种应用要是产生堆溢出几乎就无法产生堆转储快照(因为要产生超过 10GB 的 Dump 文件),哪怕产生了快照也几乎无法进行分析;
  • 相同程序在 64 位 JDK 消耗的内存一般比 32 位 JDK 大,这是由于指针膨胀,以及数据类型对齐补白等因素导致的。

使用 32 位 JVM 建立逻辑集群

在一台物理机器上启动多个应用服务器进程,每个服务器进程分配不同端口, 然后在前端搭建一个负载均衡器,以反向代理的方式来分配访问请求。

考虑到在一台物理机器上建立逻辑集群的目的仅仅是为了尽可能利用硬件资源,并不需要关心状态保留、热转移之类的高可用性能需求, 也不需要保证每个虚拟机进程有绝对的均衡负载,因此使用无 Session 复制的亲合式集群是一个不错的选择。 我们仅仅需要保障集群具备亲合性,也就是均衡器按一定的规则算法(一般根据 SessionID 分配) 将一个固定的用户请求永远分配到固定的一个集群节点进行处理即可。

可能遇到的问题:

  • 尽量避免节点竞争全局资源,如磁盘竞争,各个节点如果同时访问某个磁盘文件的话,很可能导致 IO 异常;
  • 很难高效利用资源池,如连接池,一般都是在节点建立自己独立的连接池,这样有可能导致一些节点池满了而另外一些节点仍有较多空余;
  • 各个节点受到 32 位的内存限制;
  • 大量使用本地缓存的应用,在逻辑集群中会造成较大的内存浪费,因为每个逻辑节点都有一份缓存,这时候可以考虑把本地缓存改成集中式缓存。

JetBrains软件使用

调优案例分析与实战

场景描述

一个小型系统,使用 32 位 JDK,4G 内存,测试期间发现服务端不定时抛出内存溢出异常。 加入 -XX:+HeapDumpOnOutOfMemoryError(添加这个参数后,堆内存溢出时就会输出异常日志), 但再次发生内存溢出时,没有生成相关异常日志。

分析

在 32 位 JDK 上,1.6G 分配给堆,还有一部分分配给 JVM 的其他内存,直接内存最大也只能在剩余的 0.4G 空间中分出一部分, 如果使用了 NIO,JVM 会在 JVM 内存之外分配内存空间,那么就要小心"直接内存"不足时发生内存溢出异常了。

直接内存的回收过程

直接内存虽然不是 JVM 内存空间,但它的垃圾回收也由 JVM 负责。

垃圾收集进行时,虚拟机虽然会对直接内存进行回收, 但是直接内存却不能像新生代、老年代那样,发现空间不足了就通知收集器进行垃圾回收, 它只能等老年代满了后 Full GC,然后"顺便"帮它清理掉内存的废弃对象。 否则只能一直等到抛出内存溢出异常时,先 catch 掉,再在 catch 块里大喊 "System.gc()"。 要是虚拟机还是不听,那就只能眼睁睁看着堆中还有许多空闲内存,自己却不得不抛出内存溢出异常了。

JVM 性能调优

在高性能硬件上部署程序,目前主要有两种方式:

  • 通过 64 位 JDK 来使用大内存;
  • 使用若干个 32 位虚拟机建立逻辑集群来利用硬件资源。

使用 64 位 JDK 管理大内存

堆内存变大后,虽然垃圾收集的频率减少了,但每次垃圾回收的时间变长。 如果堆内存为 14 G,那么每次 Full GC 将长达数十秒。如果 Full GC 频繁发生,那么对于一个网站来说是无法忍受的。

对于用户交互性强、对停顿时间敏感的系统,可以给 Java 虚拟机分配超大堆的前提是有把握把应用程序的 Full GC 频率控制得足够低,至少要低到不会影响用户使用。

可能面临的问题:

  • 内存回收导致的长时间停顿;
  • 现阶段,64 位 JDK 的性能普遍比 32 位 JDK 低;
  • 需要保证程序足够稳定,因为这种应用要是产生堆溢出几乎就无法产生堆转储快照(因为要产生超过 10GB 的 Dump 文件),哪怕产生了快照也几乎无法进行分析;
  • 相同程序在 64 位 JDK 消耗的内存一般比 32 位 JDK 大,这是由于指针膨胀,以及数据类型对齐补白等因素导致的。

使用 32 位 JVM 建立逻辑集群

在一台物理机器上启动多个应用服务器进程,每个服务器进程分配不同端口, 然后在前端搭建一个负载均衡器,以反向代理的方式来分配访问请求。

考虑到在一台物理机器上建立逻辑集群的目的仅仅是为了尽可能利用硬件资源,并不需要关心状态保留、热转移之类的高可用性能需求, 也不需要保证每个虚拟机进程有绝对的均衡负载,因此使用无 Session 复制的亲合式集群是一个不错的选择。 我们仅仅需要保障集群具备亲合性,也就是均衡器按一定的规则算法(一般根据 SessionID 分配) 将一个固定的用户请求永远分配到固定的一个集群节点进行处理即可。

可能遇到的问题:

  • 尽量避免节点竞争全局资源,如磁盘竞争,各个节点如果同时访问某个磁盘文件的话,很可能导致 IO 异常;
  • 很难高效利用资源池,如连接池,一般都是在节点建立自己独立的连接池,这样有可能导致一些节点池满了而另外一些节点仍有较多空余;
  • 各个节点受到 32 位的内存限制;
  • 大量使用本地缓存的应用,在逻辑集群中会造成较大的内存浪费,因为每个逻辑节点都有一份缓存,这时候可以考虑把本地缓存改成集中式缓存。

资源分享:

JAVA开发2T电子书分享:JAVA开发2T电子书分享提取码:knPG

调优案例分析与实战

场景描述

一个小型系统,使用 32 位 JDK,4G 内存,测试期间发现服务端不定时抛出内存溢出异常。 加入 -XX:+HeapDumpOnOutOfMemoryError(添加这个参数后,堆内存溢出时就会输出异常日志), 但再次发生内存溢出时,没有生成相关异常日志。

分析

在 32 位 JDK 上,1.6G 分配给堆,还有一部分分配给 JVM 的其他内存,直接内存最大也只能在剩余的 0.4G 空间中分出一部分, 如果使用了 NIO,JVM 会在 JVM 内存之外分配内存空间,那么就要小心"直接内存"不足时发生内存溢出异常了。

直接内存的回收过程

直接内存虽然不是 JVM 内存空间,但它的垃圾回收也由 JVM 负责。

垃圾收集进行时,虚拟机虽然会对直接内存进行回收, 但是直接内存却不能像新生代、老年代那样,发现空间不足了就通知收集器进行垃圾回收, 它只能等老年代满了后 Full GC,然后"顺便"帮它清理掉内存的废弃对象。 否则只能一直等到抛出内存溢出异常时,先 catch 掉,再在 catch 块里大喊 "System.gc()"。 要是虚拟机还是不听,那就只能眼睁睁看着堆中还有许多空闲内存,自己却不得不抛出内存溢出异常了。

本文由mdnice多平台发布

相关推荐
程序猿阿越18 分钟前
Kafka源码(七)事务消息
java·后端·源码阅读
m0_7482480219 分钟前
C++20 协程:在 AI 推理引擎中的深度应用
java·c++·人工智能·c++20
笑我归无处19 分钟前
强引用、软引用、弱引用、虚引用详解
java·开发语言·jvm
02苏_19 分钟前
秋招Java面
java·开发语言
爱吃甜品的糯米团子39 分钟前
详解 JavaScript 内置对象与包装类型:方法、案例与实战
java·开发语言·javascript
程序定小飞1 小时前
基于springboot的学院班级回忆录的设计与实现
java·vue.js·spring boot·后端·spring
攀小黑1 小时前
基于若依-内容管理动态修改,通过路由字典配置动态管理
java·vue.js·spring boot·前端框架·ruoyi
青云交2 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用
java·spark·lstm·可视化·java 大数据·空气质量监测·污染溯源
森语林溪2 小时前
大数据环境搭建从零开始(十七):JDK 17 安装与配置完整指南
java·大数据·开发语言·centos·vmware·软件需求·虚拟机
郝开3 小时前
Spring Boot 2.7.18(最终 2.x 系列版本)1 - 技术选型:连接池技术选型对比;接口文档技术选型对比
java·spring boot·spring