搜索引擎中广泛使用的文档排序算法——BM25(Best Matching 25)

在搜索场景中,BM25能计算每个文档与查询的匹配度,从中找出最相关的文档,并按相关性高低排序展示。

要理解BM25,需要掌握以下几个关键概念:

  1. 词频(Term Frequency, TF):某关键词在文档中出现的次数。关键词出现越频繁,通常表示文档与查询的相关性越高。

  2. 逆文档频率(Inverse Document Frequency, IDF):衡量某关键词在整个文档集合中的稀有程度。稀有关键词的区分度更高,对评分贡献大,其计算公式为:【图1】

  3. 文档长度归一化(Document Length Normalization):调整文档长度对相关性评分的影响。避免长文档因为包含更多关键词而获得不公平的高分。

  4. 参数 k1 和 b

  • k1:控制词频对评分的影响程度。值越高,词频权重越大。

  • b:控制文档长度归一化的强度。b=0时忽略文档长度,b=1时完全考虑。

BM25结合上述概念,通过以下步骤计算每篇文档的相关性得分------

计算IDF,然后计算每个关键词的得分【图2】,再将各关键词的得分相加,得到文档的总相关性得分。

举个栗子,假设有以下三个文档,查询关键词"猫 养护":

  • 文档1:包含"猫"和"养护"各2次,总长度100个词。

  • 文档2:包含"猫"3次,总长度150个词。

  • 文档3:包含"养护"1次,总长度80个词。

计算两个关键词的IDF【图3】后,再计算各文档的BM25得分,最终得出:

  • 文档1:同时包含"猫"和"养护",得分较高。

  • 文档2:仅包含"猫",但词频较高。

  • 文档3:仅包含"养护",且词频低,得分最低。

详细内容:

Understanding the BM25 full text search algorithm | Evan Schwartz

相关推荐
@LetsTGBot搜索引擎机器人1 天前
2025 Telegram 最新免费社工库机器人(LetsTG可[特殊字符])搭建指南(含 Python 脚本)
数据库·搜索引擎·机器人·开源·全文检索·facebook·twitter
老陈头聊SEO1 天前
AI驱动的SEO关键词策略优化全景解析
其他·搜索引擎·seo优化
zhyf1192 天前
Max395(ubuntu24.04)AMD显卡GLM-4.7-UD-IQ1-M量化模型部署手册
大数据·elasticsearch·搜索引擎
谷哥的小弟2 天前
Brave Search MCP服务器安装以及客户端连接配置
搜索引擎·大模型·spring ai·mcp·brave search
静听松涛1332 天前
中文PC端多人协作泳道图制作平台
大数据·论文阅读·人工智能·搜索引擎·架构·流程图·软件工程
hepingfly2 天前
外链的两个指标,DR 和 UR 一次性讲清楚
搜索引擎·个人开发·seo
老陈头聊SEO2 天前
生成引擎优化(GEO)在提升内容创作质量与用户体验中的重要作用与策略探讨
其他·搜索引擎·seo优化
lagrahhn2 天前
scoop的使用
大数据·python·搜索引擎
LaughingZhu3 天前
Product Hunt 每日热榜 | 2026-01-09
人工智能·经验分享·神经网络·搜索引擎·产品运营
Cx330❀3 天前
Git 多人协作全攻略:从入门到高效协同
大数据·elasticsearch·搜索引擎·gitee·github·全文检索·gitcode