Python 列表元素的访问、出现次数统计及成员资格判断

各类资料学习下载合集

​​​​https://pan.quark.cn/s/8c91ccb5a474​

在 Python 中,列表是一种灵活且强大的数据结构,支持多种操作,包括元素的访问、出现次数的统计以及成员资格的判断。以下是详细的介绍。

1. 列表元素的访问

列表中的元素可以通过索引访问,Python 的索引是从 0 开始的。可以使用正索引和负索引访问列表元素。

正索引访问
复制代码
my_list = [10, 20, 30, 40, 50]
print(my_list[0])  # 输出: 10
print(my_list[2])  # 输出: 30
负索引访问

负索引从列表的末尾开始计数,-1 表示最后一个元素,-2 表示倒数第二个元素,以此类推。

复制代码
print(my_list[-1])  # 输出: 50
print(my_list[-3])  # 输出: 30

2. 元素出现次数统计

要统计某个元素在列表中出现的次数,可以使用 ​​count()​​ 方法。

复制代码
my_list = [1, 2, 3, 2, 4, 2]
count_of_twos = my_list.count(2)  # 统计元素 2 的出现次数
print(count_of_twos)  # 输出: 3
  • 效率分析​count()​ 方法的时间复杂度是 O(n),因为它需要遍历整个列表来计算元素的出现次数。

3. 成员资格判断

在 Python 中,可以使用 ​​in​​ 关键字快速判断一个元素是否在列表中。这种方式非常直观,并且效率较高。

复制代码
my_list = [1, 2, 3, 4, 5]
is_present = 3 in my_list  # 判断 3 是否在列表中
print(is_present)  # 输出: True

is_absent = 6 in my_list  # 判断 6 是否在列表中
print(is_absent)  # 输出: False
  • 效率分析 :成员资格判断 ​in​ 的时间复杂度是 O(n),因为在最坏情况下需要遍历整个列表。

总结

|----------|---------------|-------|--------------------------|
| 操作 | 方法 | 时间复杂度 | 说明 |
| 访问元素 | 索引 | O(1) | 通过正索引或负索引快速访问元素。 |
| 统计元素出现次数 | ​​count()​​ | O(n) | 遍历整个列表统计元素出现次数。 |
| 成员资格判断 | ​​in​​ | O(n) | 检查元素是否在列表中,最坏情况下需遍历整个列表。 |

相关推荐
曲幽几秒前
FastAPI定时任务全攻略:从入门到避开多进程的坑
python·fastapi·web·async·sqlalchemy·lock·apscheduler·works
逢城戏元宇宙3 分钟前
区域文化IP‘逢城戏’进军元宇宙,AR盲盒带来哪些全新互动体
python
AI数据皮皮侠11 分钟前
中国耕地利用强度数据(2018-2023)
大数据·人工智能·python·深度学习·机器学习
lpfasd12314 分钟前
Spring Boot 定时任务详解(从入门到实战)
spring boot·后端·python
查无此人byebye22 分钟前
深度解析:当前AI视频生成为何普遍“短小精悍”?
人工智能·pytorch·python·深度学习·音视频·transformer
小白学大数据31 分钟前
Python 进阶爬虫:解析知识星球 API
开发语言·爬虫·python
whale fall34 分钟前
如何在同一台电脑里安装32 位 Python 和 64 位 Python
开发语言·笔记·python·学习
SNAKEpc1213836 分钟前
PyQtGraph应用(五):k线回放复盘功能实现
python·qt·pyqt
2401_8414956437 分钟前
【Python高级编程】近似串匹配
python·算法·动态规划·字符串·数组·时间复杂度·空间复杂度
历程里程碑1 小时前
滑动窗口------滑动窗口最大值
大数据·python·算法·elasticsearch·搜索引擎·flask·tornado