局部最优 全局最优 局部最优可以推出全局最优 并且想不出反例
一、简单题目
1、455 分发饼干
**题目描述:**假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
--------------- python ---------------
python
class Solution:
def findContentChildren(self, g, s):
g.sort() # 将孩子的贪心因子排序
s.sort() # 将饼干的尺寸排序
index = len(s) - 1 # 饼干数组的下标,从最后一个饼干开始
result = 0 # 满足孩子的数量
for i in range(len(g)-1, -1, -1): # 遍历胃口,从最后一个孩子开始
if index >= 0 and s[index] >= g[i]: # 遍历饼干
result += 1
index -= 1
return result
2、1005 k次取反后最大化的数组和
1005. K 次取反后最大化的数组和 - 力扣(LeetCode)
**题目描述:**给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)以这种方式修改数组后,返回数组可能的最大和。
python
class Solution:
def largestSumAfterKNegations(self, A: List[int], K: int) -> int:
A.sort(key=lambda x: abs(x), reverse=True) # 第一步:按照绝对值降序排序数组A
for i in range(len(A)): # 第二步:执行K次取反操作
if A[i] < 0 and K > 0:
A[i] *= -1
K -= 1
if K % 2 == 1: # 第三步:如果K还有剩余次数,将绝对值最小的元素取反
A[-1] *= -1
result = sum(A) # 第四步:计算数组A的元素和
return result
3、860 柠檬水找零
**题目描述:**在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。注意,一开始你手头没有任何零钱。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
--------------- python ---------------
python
class Solution:
def lemonadeChange(self, bills: List[int]) -> bool:
five = 0
ten = 0
twenty = 0
for bill in bills:
# 情况一:收到5美元
if bill == 5:
five += 1
# 情况二:收到10美元
if bill == 10:
if five <= 0:
return False
ten += 1
five -= 1
# 情况三:收到20美元
if bill == 20:
# 先尝试使用10美元和5美元找零
if five > 0 and ten > 0:
five -= 1
ten -= 1
#twenty += 1
# 如果无法使用10美元找零,则尝试使用三张5美元找零
elif five >= 3:
five -= 3
#twenty += 1
else:
return False
return True
二、中等题目-序列问题
1、376 摆动序列
**题目描述:**给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
--------------- python ---------------
python
class Solution:
def wiggleMaxLength(self, nums):
if len(nums) <= 1:
return len(nums) # 如果数组长度为0或1,则返回数组长度
curDiff = 0 # 当前一对元素的差值
preDiff = 0 # 前一对元素的差值
result = 1 # 记录峰值的个数,初始为1(默认最右边的元素被视为峰值)
for i in range(len(nums) - 1):
curDiff = nums[i + 1] - nums[i] # 计算下一个元素与当前元素的差值
# 如果遇到一个峰值
if (preDiff <= 0 and curDiff > 0) or (preDiff >= 0 and curDiff < 0):
result += 1 # 峰值个数加1
preDiff = curDiff # 注意这里,只在摆动变化的时候更新preDiff
return result # 返回最长摆动子序列的长度
三、中等题目-贪心解决股票
1、122 买卖股票的最佳时机2
122. 买卖股票的最佳时机 II - 力扣(LeetCode)
**题目描述:**给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
**Tips:**只收集每天的正利润。
--------------- python ---------------
python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
result = 0
for i in range(1, len(prices)):
result += max(prices[i] - prices[i - 1], 0)
return result
四、中等题目-两个维度权衡
1、135 分发糖果
**题目描述:**老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。你需要按照以下要求,帮助老师给这些孩子分发糖果:
- 每个孩子至少分配到 1 个糖果。
- 相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
**Tips:**考虑两边的情况一定要分开遍历。
--------------- python ---------------
python
class Solution:
def candy(self, ratings: List[int]) -> int:
candyVec = [1] * len(ratings)
# 从前向后遍历,处理右侧比左侧评分高的情况
for i in range(1, len(ratings)):
if ratings[i] > ratings[i - 1]:
candyVec[i] = candyVec[i - 1] + 1
# 从后向前遍历,处理左侧比右侧评分高的情况
for i in range(len(ratings) - 2, -1, -1):
if ratings[i] > ratings[i + 1]:
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1)
# 统计结果
result = sum(candyVec)
return result
五、有点难度-区间问题
1、55 跳跃游戏
**题目描述:**给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。
**Tips:**关注的是跳跃覆盖范围。
--------------- python ---------------
python
class Solution:
def canJump(self, nums: List[int]) -> bool:
cover = 0
if len(nums) == 1: return True
i = 0
# python不支持动态修改for循环中变量,使用while循环代替
while i <= cover:
cover = max(i + nums[i], cover)
if cover >= len(nums) - 1: return True
i += 1
return False
2、45 跳跃游戏2
**题目描述:**给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。你的目标是使用最少的跳跃次数到达数组的最后一个位置。
**Tips:**只要i遇到当前最大范围,加+1。
--------------- python ---------------
python
class Solution:
def jump(self, nums):
cur_distance = 0 # 当前覆盖的最远距离下标
ans = 0 # 记录走的最大步数
next_distance = 0 # 下一步覆盖的最远距离下标
for i in range(len(nums) - 1): # 注意这里是小于len(nums) - 1,这是关键所在
next_distance = max(nums[i] + i, next_distance) # 更新下一步覆盖的最远距离下标
if i == cur_distance: # 遇到当前覆盖的最远距离下标
cur_distance = next_distance # 更新当前覆盖的最远距离下标
ans += 1
return ans
六、有点难度-其他
1、53 最大子序和
**题目描述:**给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
--------------- python ---------------
python
class Solution:
def maxSubArray(self, nums):
result = float('-inf') # 初始化结果为负无穷大
count = 0
for i in range(len(nums)):
count += nums[i]
if count > result: # 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count
if count <= 0: # 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
count = 0
return result
2、134 加油站
**题目描述:**在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
**Tips:**如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
--------------- python ---------------
python
class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
curSum = 0 # 当前累计的剩余油量
totalSum = 0 # 总剩余油量
start = 0 # 起始位置
for i in range(len(gas)):
curSum += gas[i] - cost[i]
totalSum += gas[i] - cost[i]
if curSum < 0: # 当前累计剩余油量curSum小于0
start = i + 1 # 起始位置更新为i+1
curSum = 0 # curSum重新从0开始累计
if totalSum < 0:
return -1 # 总剩余油量totalSum小于0,说明无法环绕一圈
return start