trtllm 部署新体验

实验清华大模型和trtllm

Chatglm3

pip3 install tensorrt_llm -U --pre --extra-index-url https://pypi.nvidia.com

要安装git来下载仓库

使用这个chatglm的例子

安装依赖

用最新的glm3的model

然后开始转换model

官方写错了,这应该是个-,不是_,要注意

转换成功

开始编译引擎

trtllm-build --checkpoint_dir trt_ckpt/chatglm3_6b/fp16/1-gpu

--gemm_plugin float16

--output_dir trt_engines/chatglm3_6b/fp16/1-gpu

最后利用编译出来的引擎,进行推理,还是注意官方的_是错的,要改成-在chatglm3-6b

python3 .../run.py --input_text "What's new between ChatGLM3-6B and ChatGLM2-6B?"

--max_output_len 50

--tokenizer_dir chatglm3-6b

--engine_dir trt_engines/chatglm3_6b/fp16/1-gpu

成功输出了推理

然后换1个模型

我去https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat下载了llama3的模型,然后用trtllm的转换脚本转成下面的模型

python3 convert_checkpoint.py --model_dir ./Llama3-8B-Chinese-Chat --output_dir llama-3-8b-ckpt

再把下载的模型编译成tensorrt-llm的engine

trtllm-build --checkpoint_dir llama-3-8b-ckpt

--gemm_plugin float16

--output_dir ./llama-3-8b-engine

然后运行tensorrt-llm的engine

python3 .../run.py --engine_dir ./llama-3-8b-engine --max_output_len 100 --tokenizer_dir ./Llama3-8B-Chinese-Chat --input_text "鲁迅打了周树人"

得到了结果是

您对TRT-LLM性能的满意程度为?

我觉得模型的性能很满意,版本是0.11.0.dev2024062500

您是否遇到配置问题或报错而不知道如何解决?如有,具体是什么问题?

没有遇到错误,github的作者很细心。

您对进一步提升TRT-LLM性能的有什么建议吗?

建议我是有的,我发现单一请求的时候是很快的,但是人多了访问就变慢了,可能并发的支持能力不行。这点不知道怎样可以改善一下,希望下个版本解决这个问题。

相关推荐
AttackingLin3 分钟前
好好说话:深度学习扫盲
人工智能·深度学习
茕离44 分钟前
b站——《【强化学习】一小时完全入门》学习笔记及代码(1-3 多臂老虎机)
人工智能·笔记·学习
pchmi1 小时前
C# OpenCV机器视觉:SoftNMS非极大值抑制
人工智能·opencv·c#·机器视觉·opencvsharp
子午1 小时前
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
人工智能·python·深度学习
Jack_hrx1 小时前
DeepSeek 深度解析:引领 SEO 与数据分析新时代的智能工具
人工智能·数据挖掘·数据分析·seo·deepseek
2的n次方_1 小时前
快速部署 DeepSeek R1 模型
人工智能·自然语言处理·deepseek
徐行tag1 小时前
三角测量——用相机运动估计特征点的空间位置
人工智能·数码相机·视觉slam
qq_273900234 小时前
AF3 superimpose函数解读
人工智能·深度学习·机器学习·生物信息学
xwz小王子7 小时前
Nature Machine Intelligence 提出了LEGION的机器人终身强化学习框架
人工智能·机器人
老大白菜8 小时前
使用 DeepSeek 进行图像描述:多模态 AI 技术实践
人工智能