hadoop-mapreduce词频统计

一、Map Reduce主要阶段

二、词频统计示例

0.MapReduce 词频统计(Word Count)示例图

1. Input 阶段(输入阶段)

输入数据是一段文本,如下:

复制代码
Hadoop is a big data framework.
Hadoop can store vast data.
Hadoop processes big data.
Hadoop can analyze vast data.
Hadoop is easy.

2. Split 阶段(数据分割阶段)

输入数据被切分为更小的部分 ,每个部分对应一行文本。
作用: 将输入数据分配给不同的 Mapper 任务,实现并行处理。

复制代码
Split 1: Hadoop is a big data framework.
Split 2: Hadoop can store vast data.
Split 3: Hadoop processes big data.
Split 4: Hadoop can analyze vast data.
Split 5: Hadoop is easy.

3. Mapper Phase(映射阶段)

每个 Mapper 任务读取一个输入块,应用用户定义的 Map 函数。

Map 函数会将输入文本解析为单词,并为每个单词输出一个键值对 (Key-Value Pair),形式为 <单词, 1>。
**例如:

  • 输入:Hadoop is a big data framework.

  • 输出:<Hadoop, 1>, <is, 1>, <a, 1>, <big, 1>, <data, 1>, <framework, 1>
    作用:**Map 阶段的任务是将原始数据转化为键值对,并提取有用信息。

    Mapper 输出:

    Split 1: <Hadoop, 1>, <is, 1>, <a, 1>, <big, 1>, <data, 1>, <framework, 1>
    Split 2: <Hadoop, 1>, <can, 1>, <store, 1>, <vast, 1>, <data, 1>
    Split 3: <Hadoop, 1>, <processes, 1>, <big, 1>, <data, 1>
    Split 4: <Hadoop, 1>, <can, 1>, <analyze, 1>, <vast, 1>, <data, 1>
    Split 5: <Hadoop, 1>, <is, 1>, <easy, 1>

4. Shuffle and Sort 阶段(洗牌和排序阶段)

洗牌(Shuffle):

将 Mapper 阶段输出的键值对,根据键(单词)进行分组

所有相同键的键值对被发送到同一个 Reducer 任务。
例如:来自不同 Mapper 的 <Hadoop, 1> 被收集到一起:<Hadoop, [1, 1, 1, 1, 1]>

排序(Sort):

对每个键值对按照键排序(升序)。

图中展示了 Hadoop、is、a 等单词被分组和排序。

作用:实现数据分布和排序,为 Reduce 阶段的处理做好准备。

5. Reduce Phase(归约阶段)

Reduce 函数对每个键及其关联的值列表进行聚合计算
**示例:

  • 输入:<Hadoop, [1, 1, 1, 1, 1]>
  • Reduce 计算:对列表中的值进行累加:1 + 1 + 1 + 1 + 1 = 5
  • 输出:<Hadoop, 5>**

其他 Reduce 结果:

  • <is, 2>

  • <a, 1>

  • <big, 2>

  • <data, 4>

  • <framework, 1>

  • <easy, 1>

作用:Reduce 阶段将分组后的数据进行汇总、聚合、统计,生成最终结果。

6. output阶段(输出阶段)

复制代码
a, 1
analyze, 1
big, 2
can, 2
data, 4
easy, 1
framework, 1
Hadoop, 5
is, 2
processes, 1
store, 1
vast, 2

三、过程总结

参考资料

https://www.youtube.com/watch?v=aReuLtY0YMI

相关推荐
秃头菜狗4 小时前
八、安装 Hadoop
大数据·hadoop·分布式
顧棟10 小时前
【HDFS实战】HADOOP 机架感知能力-HDFS
大数据·hadoop·hdfs
亚林瓜子11 小时前
AWS中国云中的ETL之从aurora搬数据到s3(Glue版)
hadoop·spark·云计算·etl·aws
涤生大数据18 小时前
从MR迁移到Spark3:数据倾斜与膨胀问题的实战优化
数据库·数据仓库·spark·mapreduce·大数据开发·数据倾斜·spark3
IT毕设梦工厂18 小时前
大数据毕业设计选题推荐-基于大数据的全国饮品门店数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
亚林瓜子19 小时前
AWS中的离线计算(大数据大屏项目)
大数据·hadoop·sql·spark·云计算·aws
IT研究室20 小时前
大数据毕业设计选题推荐-基于大数据的青光眼数据可视化分析系统-大数据-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
某zhuan1 天前
云计算实验1——CentOS中hadoop的安装
hadoop·centos·云计算
董可伦1 天前
Hadoop HA 集群安装配置
大数据·hadoop·分布式
学习中的阿陈1 天前
Hadoop完全分布式配置
大数据·hadoop·分布式