【数据可视化入门】Python散点图全攻略:Matplotlib、Seaborn、Pyecharts实战代码大公开!

数据可视化入门-系列文章目录

Python散点图全攻略:Matplotlib、Seaborn、Pyecharts实战代码大公开!


文章目录


前言

在数据分析的世界里,数据可视化是将复杂数据转化为直观图形的重要手段。今天,我们将手把手教你如何使用Python中的Matplotlib、Seaborn和Pyecharts三大库来绘制散点图,让你的数据展示更加生动有趣!


1. Matplotlib:基础绘图库

Matplotlib是Python中的基础绘图库,它提供了丰富的绘图功能,适用于科研论文和数据分析报告。以下是使用Matplotlib绘制散点图的详细步骤和代码:

导入库:

python 复制代码
import matplotlib.pyplot as plt

创建数据:

python 复制代码
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

绘制散点图:

python 复制代码
plt.scatter(x, y, label='Data Points', color='blue', marker='o')

添加标签和标题:

python 复制代码
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot')

添加图例和网格:

python 复制代码
plt.legend()
plt.grid(True)

显示图形:

python 复制代码
plt.show()

2. Seaborn:基于Matplotlib的高级绘图库

Seaborn是基于Matplotlib的高级绘图库,它提供了更加美观的样式和便捷的统计分析功能。以下是使用Seaborn绘制散点图的步骤和代码:

导入库:

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

创建数据:

python 复制代码
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

绘制散点图:

python 复制代码
sns.scatterplot(x=x, y=y, label='Data Points')

添加标签和标题:

python 复制代码
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot')

添加图例和网格:

python 复制代码
plt.legend()
plt.grid(True)

显示图形:

python 复制代码
plt.show()

3. Pyecharts:交互式图表库

Pyecharts是一个强大的交互式图表库,适合在网页中展示数据。以下是使用Pyecharts绘制散点图的步骤和代码:

导入库:

python 复制代码
from pyecharts.charts import Scatter
from pyecharts import options as opts

创建数据:

python 复制代码
data = [(1, 2), (2, 3), (3, 5), (4, 7), (5, 11)]

创建散点图对象:

python 复制代码
scatter = (
    Scatter()
    .add_xaxis([x for x, y in data])
    .add_yaxis("Data Points", [y for x, y in data])
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Scatter Plot"),
        xaxis_opts=opts.AxisOpts(name="X-axis"),
        yaxis_opts=opts.AxisOpts(name="Y-axis"),
    )
)

渲染图表:

在Jupyter Notebook中使用:

python 复制代码
scatter.render_notebook()

在普通Python脚本中使用:

python 复制代码
scatter.render("scatter_plot.html")

特点比较与选择建议

  • Matplotlib:基础库,支持自定义,适合科研论文和数据分析报告。
  • Seaborn:基于Matplotlib,样式美观,适合统计分析和探索性数据分析。
  • Pyecharts:交互性强,适合网页展示,适合数据展示和交互式仪表板。

结语:

通过这篇文章,你是否对Python中的散点图绘制有了更深的理解呢?选择合适的工具,让你的数据可视化更加高效和专业。记得点赞和分享哦,我们下次再见!

相关推荐
习习.y4 分钟前
关于python中的面向对象
开发语言·python
hmbbcsm12 分钟前
练习python题目小记(六)
开发语言·python
wow_DG21 分钟前
【Python✨】VS Code 秒开 Python 类型检查:一招 mypy + settings.json 让你的 Bug 原地现形!
python·json·bug
Aspect of twilight38 分钟前
LeetCode华为大模型岗刷题
python·leetcode·华为·力扣·算法题
空影星1 小时前
高效追踪电脑使用时间,Tockler助你优化时间管理
python·django·flask
LiLiYuan.1 小时前
【Lombok库常用注解】
java·开发语言·python
不去幼儿园2 小时前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
二川bro2 小时前
数据可视化进阶:Python动态图表制作实战
开发语言·python·信息可视化
青青子衿_212 小时前
TikTok爬取——视频、元数据、一级评论
爬虫·python·selenium
忘却的旋律dw3 小时前
使用LLM模型的tokenizer报错AttributeError: ‘dict‘ object has no attribute ‘model_type‘
人工智能·pytorch·python