深度学习之 RefineNet

网络结构:

RefineNet block的作用就是把不同resolution level的feature map进行融合。网络结构如下:

最左边一栏就是FCN的encoder部分(文中是用的ResNet),先把pretrained ResNet按feature map的分辨率分成四个ResNet blocks,然后向右把四个blocks分别作为4个path通过RefineNet block进行融合refine,最后得到一个refined feature map(接softmax再双线性插值输出)。

注意除了RefineNet-4,所有的RefineNet block都是二输入的,用于融合不同level做refine,而单输入的RefineNet-4可以看作是先对ResNet的一个task adaptation。

RefineNet Block

接下来仔细看一下RefineNet block,可以看到主要组成部分是Residual convolution unit, Multi-resolution fusion, Chained residual pooling, Output convolutions. 切记这个block作用是融合多个level的feature map输出单个level的feature map,但具体的实现应该是和输入个数、shape无关的。

Residual convolution unit就是普通的去除了BN的residual unit;

Multi-resolution fusion是先对多输入的feature map都用一个卷积层进行adaptation(都化到最小的feature map的shape),再上采样再做element-wise的相加。注意如果是像RefineNet-4那样的单输入block这一部分就直接pass了;

Chained residual pooling中的ReLU对接下来池化的有效性很重要,还可以使模型对学习率的变化没这么敏感。这个链式结构能从很大范围区域上获取背景context。另外,这个结构中大量使用了identity mapping这样的连接,无论长距离或者短距离的,这样的结构允许梯度从一个block直接向其他任一block传播。

Output convolutions就是输出前再加一个RCU。

相关推荐
草莓熊Lotso4 分钟前
《算法闯关指南:动态规划算法--斐波拉契数列模型》--04.解码方法
c++·人工智能·算法·动态规划
狂放不羁霸7 分钟前
电子科技大学2025年机器学习期末考试回忆
人工智能·机器学习
多恩Stone15 分钟前
【3DV 进阶-9】Hunyuan3D2.1 中的 MoE
人工智能·pytorch·python·算法·aigc
Chase_______21 分钟前
AI 提升效率指南:如何高效书写提示词
人工智能·ai·prompt
FL162386312923 分钟前
电力场景电杆类型识别分割数据集labelme格式4707张9类别
深度学习
数据猿32 分钟前
【“致敬十年”系列】专访中国商联数据委会长邹东生:以“最小化场景闭环”实现AI真价值
大数据·人工智能
无垠的广袤35 分钟前
【工业树莓派 CM0 NANO 单板计算机】小智语音聊天
人工智能·python·嵌入式硬件·语言模型·树莓派·智能体·小智
智算菩萨35 分钟前
深度学习在软件工程领域的系统性研究综述:理论、方法与实践
人工智能·深度学习·软件工程
这张生成的图像能检测吗37 分钟前
(论文速读)DreamOmni:统一的图像生成和编辑
人工智能·深度学习·计算机视觉·图像生成、编辑
工藤学编程44 分钟前
零基础学AI大模型之新版LangChain向量数据库VectorStore设计全解析
数据库·人工智能·langchain