深度学习之 RefineNet

网络结构:

RefineNet block的作用就是把不同resolution level的feature map进行融合。网络结构如下:

最左边一栏就是FCN的encoder部分(文中是用的ResNet),先把pretrained ResNet按feature map的分辨率分成四个ResNet blocks,然后向右把四个blocks分别作为4个path通过RefineNet block进行融合refine,最后得到一个refined feature map(接softmax再双线性插值输出)。

注意除了RefineNet-4,所有的RefineNet block都是二输入的,用于融合不同level做refine,而单输入的RefineNet-4可以看作是先对ResNet的一个task adaptation。

RefineNet Block

接下来仔细看一下RefineNet block,可以看到主要组成部分是Residual convolution unit, Multi-resolution fusion, Chained residual pooling, Output convolutions. 切记这个block作用是融合多个level的feature map输出单个level的feature map,但具体的实现应该是和输入个数、shape无关的。

Residual convolution unit就是普通的去除了BN的residual unit;

Multi-resolution fusion是先对多输入的feature map都用一个卷积层进行adaptation(都化到最小的feature map的shape),再上采样再做element-wise的相加。注意如果是像RefineNet-4那样的单输入block这一部分就直接pass了;

Chained residual pooling中的ReLU对接下来池化的有效性很重要,还可以使模型对学习率的变化没这么敏感。这个链式结构能从很大范围区域上获取背景context。另外,这个结构中大量使用了identity mapping这样的连接,无论长距离或者短距离的,这样的结构允许梯度从一个block直接向其他任一block传播。

Output convolutions就是输出前再加一个RCU。

相关推荐
下海fallsea18 小时前
韩国零食正在占领俄罗斯
大数据·人工智能
dulu~dulu18 小时前
机器学习试题总结
人工智能·决策树·机器学习·支持向量机·学习笔记·线性回归·集成学习
Coder_Boy_18 小时前
基于SpringAI的企业级智能教学考试:基础资源构建模块
人工智能·spring boot
北邮刘老师18 小时前
【智能体互联协议解析】AIP/ACPs如何实现“自主互联,协商互通,独立自治”
网络·人工智能·大模型·智能体·智能体互联网
Coder个人博客19 小时前
Transformers分词器模块深度分析
人工智能·自动驾驶·transformer
简简单单OnlineZuozuo19 小时前
视觉模型的偏见和捷径测试:来自真实世界实验的实用测试套件
人工智能·深度学习·安全·图像识别·banana
Coder_Boy_19 小时前
基于SpringAI的企业级智能教学考试平台模块二:核心执行模块内容
人工智能·spring boot
玄同76519 小时前
我是如何开发项目的?——从 “踩坑思维” 到 “工程化能力”:编程学习的进阶方法论(万字版)
开发语言·人工智能·经验分享·笔记·python·学习·课程设计
●VON19 小时前
影像之眼:人工智能如何重塑医学诊断的边界
人工智能·学习·von
张二娃同学19 小时前
深度学习入门篇——YOLO数据集的制作与模型训练
人工智能·深度学习·yolo