深度学习之 RefineNet

网络结构:

RefineNet block的作用就是把不同resolution level的feature map进行融合。网络结构如下:

最左边一栏就是FCN的encoder部分(文中是用的ResNet),先把pretrained ResNet按feature map的分辨率分成四个ResNet blocks,然后向右把四个blocks分别作为4个path通过RefineNet block进行融合refine,最后得到一个refined feature map(接softmax再双线性插值输出)。

注意除了RefineNet-4,所有的RefineNet block都是二输入的,用于融合不同level做refine,而单输入的RefineNet-4可以看作是先对ResNet的一个task adaptation。

RefineNet Block

接下来仔细看一下RefineNet block,可以看到主要组成部分是Residual convolution unit, Multi-resolution fusion, Chained residual pooling, Output convolutions. 切记这个block作用是融合多个level的feature map输出单个level的feature map,但具体的实现应该是和输入个数、shape无关的。

Residual convolution unit就是普通的去除了BN的residual unit;

Multi-resolution fusion是先对多输入的feature map都用一个卷积层进行adaptation(都化到最小的feature map的shape),再上采样再做element-wise的相加。注意如果是像RefineNet-4那样的单输入block这一部分就直接pass了;

Chained residual pooling中的ReLU对接下来池化的有效性很重要,还可以使模型对学习率的变化没这么敏感。这个链式结构能从很大范围区域上获取背景context。另外,这个结构中大量使用了identity mapping这样的连接,无论长距离或者短距离的,这样的结构允许梯度从一个block直接向其他任一block传播。

Output convolutions就是输出前再加一个RCU。

相关推荐
大千AI助手6 分钟前
多重共线性:机器学习中的诊断与应对策略
人工智能·机器学习·线性回归·相关性·大千ai助手·多重共线性·线性组合
阿杰学AI7 分钟前
AI核心知识41——大语言模型之 MCP(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·agi·mcp·模型上下文协议
边缘计算社区7 分钟前
风向变了?EE Times:AI 的未来,现在全看边缘计算
人工智能·边缘计算
玖日大大10 分钟前
AI 模型全景解析:从基础原理到产业落地(2025 最新版)
人工智能
java1234_小锋12 分钟前
Transformer 大语言模型(LLM)基石 - Transformer简介
深度学习·语言模型·llm·transformer·大语言模型
腾飞开源12 分钟前
27_Spring AI 干货笔记之 OpenAI SDK 聊天功能(官方支持)
人工智能·多模态·工具调用·spring ai·openai sdk·github models·示例控制器
有来有去952712 分钟前
[模型量化]-大模型量化效果评价-Qwen2.5-72B
人工智能·语言模型·gpu算力
斯外戈的小白16 分钟前
【NLP】one-hot到word2vec发展路线
人工智能·自然语言处理·word2vec
zhurui_xiaozhuzaizai16 分钟前
RL 训练中的“训练-推理不匹配”难题:根源分析于解决办法(重要性采样IS 、 切回 FP16精度)
人工智能