深度学习之 RefineNet

网络结构:

RefineNet block的作用就是把不同resolution level的feature map进行融合。网络结构如下:

最左边一栏就是FCN的encoder部分(文中是用的ResNet),先把pretrained ResNet按feature map的分辨率分成四个ResNet blocks,然后向右把四个blocks分别作为4个path通过RefineNet block进行融合refine,最后得到一个refined feature map(接softmax再双线性插值输出)。

注意除了RefineNet-4,所有的RefineNet block都是二输入的,用于融合不同level做refine,而单输入的RefineNet-4可以看作是先对ResNet的一个task adaptation。

RefineNet Block

接下来仔细看一下RefineNet block,可以看到主要组成部分是Residual convolution unit, Multi-resolution fusion, Chained residual pooling, Output convolutions. 切记这个block作用是融合多个level的feature map输出单个level的feature map,但具体的实现应该是和输入个数、shape无关的。

Residual convolution unit就是普通的去除了BN的residual unit;

Multi-resolution fusion是先对多输入的feature map都用一个卷积层进行adaptation(都化到最小的feature map的shape),再上采样再做element-wise的相加。注意如果是像RefineNet-4那样的单输入block这一部分就直接pass了;

Chained residual pooling中的ReLU对接下来池化的有效性很重要,还可以使模型对学习率的变化没这么敏感。这个链式结构能从很大范围区域上获取背景context。另外,这个结构中大量使用了identity mapping这样的连接,无论长距离或者短距离的,这样的结构允许梯度从一个block直接向其他任一block传播。

Output convolutions就是输出前再加一个RCU。

相关推荐
ASKED_20191 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba1 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学1 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子1 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望1 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端1 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白2 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗
阿正的梦工坊2 小时前
Kronecker积详解
人工智能·深度学习·机器学习
Rui_Freely2 小时前
Vins-Fusion之ROS2(节点创建、订阅者、发布者)(一)
人工智能·计算机视觉
快降重2 小时前
投稿前的“精准体检”:自查查重,如何选择可靠的第三方工具?
人工智能·aigc·写作·降重·查重·降ai