深度学习之 RefineNet

网络结构:

RefineNet block的作用就是把不同resolution level的feature map进行融合。网络结构如下:

最左边一栏就是FCN的encoder部分(文中是用的ResNet),先把pretrained ResNet按feature map的分辨率分成四个ResNet blocks,然后向右把四个blocks分别作为4个path通过RefineNet block进行融合refine,最后得到一个refined feature map(接softmax再双线性插值输出)。

注意除了RefineNet-4,所有的RefineNet block都是二输入的,用于融合不同level做refine,而单输入的RefineNet-4可以看作是先对ResNet的一个task adaptation。

RefineNet Block

接下来仔细看一下RefineNet block,可以看到主要组成部分是Residual convolution unit, Multi-resolution fusion, Chained residual pooling, Output convolutions. 切记这个block作用是融合多个level的feature map输出单个level的feature map,但具体的实现应该是和输入个数、shape无关的。

Residual convolution unit就是普通的去除了BN的residual unit;

Multi-resolution fusion是先对多输入的feature map都用一个卷积层进行adaptation(都化到最小的feature map的shape),再上采样再做element-wise的相加。注意如果是像RefineNet-4那样的单输入block这一部分就直接pass了;

Chained residual pooling中的ReLU对接下来池化的有效性很重要,还可以使模型对学习率的变化没这么敏感。这个链式结构能从很大范围区域上获取背景context。另外,这个结构中大量使用了identity mapping这样的连接,无论长距离或者短距离的,这样的结构允许梯度从一个block直接向其他任一block传播。

Output convolutions就是输出前再加一个RCU。

相关推荐
马踏岛国赏樱花5 分钟前
低成本大模型构建-KTransformers
人工智能
MR_Colorful9 分钟前
从零开始:Windows 深度学习GPU环境配置完整指南(以TensorFlow为例)
人工智能·深度学习
心无旁骛~14 分钟前
openGauss 在 AI、RAG 与向量数据库时代的技术破局与生态深耕
数据库·人工智能
haing201916 分钟前
Bezier曲线曲率极值的计算方法
人工智能·算法·机器学习·曲率极值
xwill*17 分钟前
π0: A Vision-Language-Action Flow Model for General Robot Control
人工智能·深度学习
歌_顿21 分钟前
深度学习算法以及优化器复习
人工智能·算法
AI360labs_atyun26 分钟前
学习教学AI指南,附4个提示词指令(Prompts)
人工智能·科技·学习·ai·chatgpt
Hy行者勇哥30 分钟前
从人工账本到智能终端:智能硬件核算碳排放的 演进史
大数据·人工智能·边缘计算·智能硬件
源代码杀手30 分钟前
AI 芯片设计完整知识体系研究调研报告——资料参考来源文献
人工智能
爱思德学术38 分钟前
中国计算机学会(CCF)推荐学术会议-C(计算机体系结构/并行与分布计算/存储系统):CF 2026
人工智能·算法·硬件