深度学习之 RefineNet

网络结构:

RefineNet block的作用就是把不同resolution level的feature map进行融合。网络结构如下:

最左边一栏就是FCN的encoder部分(文中是用的ResNet),先把pretrained ResNet按feature map的分辨率分成四个ResNet blocks,然后向右把四个blocks分别作为4个path通过RefineNet block进行融合refine,最后得到一个refined feature map(接softmax再双线性插值输出)。

注意除了RefineNet-4,所有的RefineNet block都是二输入的,用于融合不同level做refine,而单输入的RefineNet-4可以看作是先对ResNet的一个task adaptation。

RefineNet Block

接下来仔细看一下RefineNet block,可以看到主要组成部分是Residual convolution unit, Multi-resolution fusion, Chained residual pooling, Output convolutions. 切记这个block作用是融合多个level的feature map输出单个level的feature map,但具体的实现应该是和输入个数、shape无关的。

Residual convolution unit就是普通的去除了BN的residual unit;

Multi-resolution fusion是先对多输入的feature map都用一个卷积层进行adaptation(都化到最小的feature map的shape),再上采样再做element-wise的相加。注意如果是像RefineNet-4那样的单输入block这一部分就直接pass了;

Chained residual pooling中的ReLU对接下来池化的有效性很重要,还可以使模型对学习率的变化没这么敏感。这个链式结构能从很大范围区域上获取背景context。另外,这个结构中大量使用了identity mapping这样的连接,无论长距离或者短距离的,这样的结构允许梯度从一个block直接向其他任一block传播。

Output convolutions就是输出前再加一个RCU。

相关推荐
KG_LLM图谱增强大模型32 分钟前
LLM能否通过语料库统计量成为可靠的检索触发器?
人工智能·知识图谱
呆萌很33 分钟前
transforms.ColorJitter 数据增强工具
人工智能
Sheffi6641 分钟前
AI智能体编程时代的技术架构:Claude Agent与OpenAI Codex在Xcode中的集成原理
人工智能·架构·xcode
Purple Coder1 小时前
神经网络与深度学习
人工智能·深度学习·神经网络
龙山云仓1 小时前
No156:AI中国故事-对话司马迁——史家绝唱与AI记忆:时间叙事与因果之链
大数据·开发语言·人工智能·python·机器学习
niuniudengdeng1 小时前
一种基于高维物理张量与XRF实景复刻的一步闭式解工业级3D打印品生成模型
人工智能·python·数学·算法·3d
AI周红伟1 小时前
周红伟:Agent Skills+OpenClaw+RAG+Agent+SeeDance2.0企业智能体智能体应用实战
人工智能·大模型·智能体·seedance
张小凡vip1 小时前
OpenClaw简介--windows系统安装OpenClaw
人工智能·windows·openclaw
HaiLang_IT2 小时前
计算机科学与技术专业优质选题推荐 选题合集 | 人工智能/自然语言处理/计算机视觉
人工智能·自然语言处理·课程设计
Rolei_zl2 小时前
AIGC(生成式AI)试用 46 -- AI与软件开发过程1
人工智能·aigc