基于 LlamaFactory 的 LoRA 微调模型支持 vllm 批量推理的实现

背景

LlamaFactory 的 LoRA 微调功能非常便捷,微调后的模型,没有直接支持 vllm 推理,故导致推理速度不够快。

LlamaFactory 目前支持通过 VLLM API 进行部署,调用 API 时的响应速度,仍然没有vllm批量推理的速度快。

如果模型是通过 LlamaFactory 微调的,为了确保数据集的一致性,建议在推理时也使用 LlamaFactory 提供的封装数据集。

简介

在上述的背景下,我们使用 LlamaFactory 原生数据集,支持 lora的 vllm 批量推理。

完整代码如下:

c 复制代码
import json
import os
from typing import List

from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest

from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_train_args
from llamafactory.model import load_tokenizer

def vllm_infer():
    model_args, data_args, training_args, finetuning_args, generating_args = (
        get_train_args()
    )
    tokenizer = load_tokenizer(model_args)["tokenizer"]
    template = get_template_and_fix_tokenizer(tokenizer, data_args)

    eval_dataset = get_dataset(
        template, model_args, data_args, training_args, finetuning_args.stage, tokenizer
    )["eval_dataset"]

    prompts = [item["input_ids"] for item in eval_dataset]
    prompts = tokenizer.batch_decode(prompts, skip_special_tokens=False)

    labels = [
        list(filter(lambda x: x != IGNORE_INDEX, item["labels"]))
        for item in eval_dataset
    ]
    labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    sampling_params = SamplingParams(
        temperature=generating_args.temperature,
        top_k=generating_args.top_k,
        top_p=generating_args.top_p,
        max_tokens=2048,
    )

    if model_args.adapter_name_or_path:
        if isinstance(model_args.adapter_name_or_path, list):
            lora_requests = []
            for i, _lora_path in enumerate(model_args.adapter_name_or_path):
                lora_requests.append(
                    LoRARequest(f"lora_adapter_{i}", i, lora_path=_lora_path)
                )
        else:
            lora_requests = LoRARequest(
                "lora_adapter_0", 0, lora_path=model_args.adapter_name_or_path
            )

        enable_lora = True
    else:
        lora_requests = None
        enable_lora = False

    llm = LLM(
        model=model_args.model_name_or_path,
        trust_remote_code=True,
        tokenizer=model_args.model_name_or_path,
        enable_lora=enable_lora,
    )

    outputs = llm.generate(prompts, sampling_params, lora_request=lora_requests)

    if not os.path.exists(training_args.output_dir):
        os.makedirs(training_args.output_dir, exist_ok=True)

    output_prediction_file = os.path.join(
        training_args.output_dir, "generated_predictions.jsonl"
    )

    with open(output_prediction_file, "w", encoding="utf-8") as writer:
        res: List[str] = []
        for text, pred, label in zip(prompts, outputs, labels):
            res.append(
                json.dumps(
                    {"prompt": text, "predict": pred.outputs[0].text, "label": label},
                    ensure_ascii=False,
                )
            )
        writer.write("\n".join(res))

vllm.yaml 示例:

c 复制代码
## model
model_name_or_path: qwen/Qwen2.5-7B-Instruct
# adapter_name_or_path: lora模型

### method
stage: sft
do_predict: true
finetuning_type: lora

### dataset
dataset_dir: 数据集路径
eval_dataset: 数据集
template: qwen
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: output/
overwrite_output_dir: true

### eval
predict_with_generate: true

程序调用:

shell 复制代码
python vllm_infer.py vllm.yaml

程序运行速度:

shell 复制代码
Processed prompts: 100%|█| 1000/1000 [01:56<00:00,  8.60it/s, est. speed input: 5169.35 toks/s, output: 811.57

总结

本方案在原生 LlamaFactory 数据集的基础上,支持 LoRA 的 vllm 批量推理,能提升了推理效率。

相关推荐
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
第七序章2 天前
【C++STL】list的详细用法和底层实现
c语言·c++·自然语言处理·list
九章云极AladdinEdu2 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡2 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有3 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
大千AI助手3 天前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准