深度学习读书笔记 绪论

深度学习是什么?

机器学习的分支。

深度学习问题也是指从有限样例中总结出一般的规律,应用在新的未知数据上的方法。

机器学习的三个基本要素

模型

机器学习任务首要弄明白的,也就是一个机器学习任务所面对的输入空间和输出空间。

输入空间到输出空间,xy之间的关系可以用一个函数或者分布来描述的话,机器学习的目标就是找到模型来接近这个真实的函数或者分布。

假设空间

指的是所有可能的预测模型(或假设)的集合。

也就是输入空间和输出空间的中间,模型参数作为模型这个假想函数的变量,作为一种理想状态来拟合真实情况或者说真实的函数。

学习准则

如果训练集由N个独立的,同分布的样本组成。

好的模型应该让xy的值与真实情况尽可能一致。

模型使用期望风险来衡量。

期望风险则是由损失函数来量化xy和真实xy的差异,从而计算期望来定义的。

损失函数有很多种,各自有优缺点。

我们想着最后总要让这个损失函数计算的期望最低,也就是风险最小化准则。

但是期望风险无法计算,能够计算的是经验风险,也就是训练集上的损失函数量化的结果。

如果追求风险最小化,得到的是经验风险的最小化,而不是期望风险。

如果训练样本量比较小,这样容易过拟合。

过拟合:

表现为模型在训练集上错误率低,在未知数据上错误率高。

为了解决过拟合,引入正则化。

正则化:

修改损失函数,添加正则项。

优化算法

最后,确定了训练集,假设空间,学习准则之后,如何找到最优模型?

一个最优化问题。怎么找到最优参数,就是我们的优化算法要解决的事情。

参数,超参数

如果理解参数是函数的系数的话,我们的超参数就是用来定义模型结构或者优化策略的。超参数是用来得到最优参数的手段的参数。

比如聚类算法的类别个数,梯度下降法的步长等。

梯度下降

最常见的优化算法。可以理解为一个人不断下山,寻找最优(最低处)目标。有很多情况,如果优化目标函数是非凸的,就可能只能找到局部最优。为此设计了很多不同的梯度下降避免我们下山路上卡在小山沟,比如一次性走的步长不同之类的思路。

提前停止

防止过拟合。在训练集上训练,使用验证集测试模型是否最优。每次迭代,检测训练出的模型是否在验证集上最优(即准确率不再提升)。

如果在训练集上准确率不断提升,验证集却证明准确率没有提升就是过拟合了,所以我们要在验证集上准确率不再提升时提前停止。

总结

深度学习也是机器学习,在一个机器学习任务中,最开始很重要的就是输入空间和输出空间的确立。之间的真实映射我们使用假设来拟合它,假设的集合就是假设空间。之后使用一个函数来评价不同假设的效果。之后使用优化算法使目标函数最小。(或者说假设效果最好)

相关推荐
YJlio10 小时前
[编程达人挑战赛] 用 PowerShell 写了一个“电脑一键初始化脚本”:从混乱到可复制的开发环境
数据库·人工智能·电脑
RoboWizard10 小时前
PCIe 5.0 SSD有无独立缓存对性能影响大吗?Kingston FURY Renegade G5!
人工智能·缓存·电脑·金士顿
霍格沃兹测试开发学社-小明11 小时前
测试左移2.0:在开发周期前端筑起质量防线
前端·javascript·网络·人工智能·测试工具·easyui
懒麻蛇11 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
xwill*11 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
网安INF11 小时前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归
陈奕昆11 小时前
n8n实战营Day2课时2:Loop+Merge节点进阶·Excel批量校验实操
人工智能·python·excel·n8n
程序猿追11 小时前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习
程序小旭11 小时前
Kaggle平台的使用
人工智能
xieyan081111 小时前
强化学习工具及优化方法
人工智能