深度学习:梯度下降法

损失函数 L:衡量单一训练样例的效果。

成本函数 J:用于衡量 w 和 b 的效果。

如何使用梯度下降法来训练或学习训练集上的参数w和b ?

成本函数J是参数w和b的函数,它被定义为平均值;

损失函数L可以衡量你的算法效果,每一个训练样例都输出,把它跟真实标签进行比较。

**梯度下降法:**从初始点开始,朝最陡的下坡方向走一步,在梯度下降一步后,或许在那里停下,或者尽可能快的向下走,这是梯度下降的一次迭代。然后继续,希望收敛到全局最优解。

Gradient Descent 梯度下降法,重复执行以下的更新操作:

  • 更新w的值(使用 := 表示更新w)。
  • Learning Rate 学习率 可以控制每一次迭代,或者梯度下降法中的步长。
  • 这里的导数 dJ(w)/dw 就是对参数w的更新或变化量。
  • 我们写代码来实现梯度下降时,会使用变量名dw表示导数,即上图中的式子写为:
  • w := w - dw
  • 新的w的值 等于 w自身 减去 学习率和导数的乘积

导数是函数在对应点的斜率,函数的斜率是高除以宽。如果J函数最开始在右边的点,那么它的斜率是正数,更新的w的值w := w - dw会变小,即上图中的点会往左移;反之,如果一开始点在左上方,即斜率为负数,那么更新的w的值会变大,也就是会逐渐往右移。不论起始点在左边还是右边,最终都会到中间底部那个点。

在深度学习里,有循环会降低算法的运行效率。实现梯度下降的迭代,不使用任何循环,而是向量化(Vectorization)。使用内置函数,避免使用显式for循环,可以让程序运行速度快很多。

python 复制代码
import numpy as np

import time

a = np.random.rand(1000000)
b = np.random.rand(1000000)

tic = time.time()
c = np.dot(a,b)
toc = time.time()

print(c)
print("Vectorization version: " + str(1000*(toc-tic)) + "ms")

c = 0
tic = time.time()
for i in range(1000000):
    c += a[i]*b[i]
toc = time.time()

print(c)
print("For loop:" + str(1000*(toc-tic)) + "ms")

运行结果:

由上述代码运行结果可知,使用内置函数比显式使用for循环快了200倍,所以我们尽量不要使用显示for循环。

相关推荐
jz_ddk1 天前
[数学基础] 浅尝向量与张量
人工智能·机器学习·向量·张量
孔明兴汉1 天前
大模型 ai coding 比较
人工智能
IT研究所1 天前
IT 资产管理 (ITAM) 与 ITSM 协同实践:构建从资产到服务的闭环管理体系
大数据·运维·人工智能·科技·安全·低代码·自动化
沐曦股份MetaX1 天前
基于内生复杂性的类脑脉冲大模型“瞬悉1.0”问世
人工智能·开源
power 雀儿1 天前
张量基本运算
人工智能
陈天伟教授1 天前
人工智能应用- 人工智能交叉:01. 破解蛋白质结构之谜
人工智能·神经网络·算法·机器学习·推荐算法
政安晨1 天前
政安晨【人工智能项目随笔】使用OpenClaw的主节点协同子节点撰写大型技术前沿论文的实战指南
人工智能·ai agent·openclaw论文写作·openclaw论文写作经验·ai代理写论文·ai分布式协作·oepnclaw应用
大成京牌1 天前
2026年京牌政策深度对比,三款优质车型选购推荐榜单探索
人工智能
听麟1 天前
HarmonyOS 6.0+ 跨端会议助手APP开发实战:多设备接续与智能纪要全流程落地
分布式·深度学习·华为·区块链·wpf·harmonyos
xuxianliang1 天前
第154章 “神谕”的低语(AI)
人工智能·程序员创富