神经网络入门实战:(九)分类问题 → 神经网络模型搭建模版和训练四步曲

(一) 神经网络模型搭建官方文档

每一层基本都有权重和偏置,可以仔细看官方文档。

pytorch 官网的库:torch.nn --- PyTorch 2.5 documentation

  • Containers库:用来搭建神经网络框架(包含所有的神经网络的框架);
  • ++特征提取:++
    • Convolution Layers:用来搭建卷积层;
    • Pooling layers:用来搭建池化层;
    • Padding Layers:用来搭建填充层;
  • ++分类:++
    • Linear Layers:用来搭建全连接层。

(二) 神经网络模型模版(Containers库中的nn.Module)

在写代码的过程中,通常会把神经网络定义成一个类(class),其模版就如下所示:

python 复制代码
# 我们的模型类应该继承自nn.Module,这是所有神经网络模块的基类。
# 每个模型类中,都必须要定义以下两个
class LinearModel(torch.nn.Module): # 其中nn是神经网络neural network的缩写
    def __init__(self): # 构造函数,初始化对象时调用的函数,名字也不能变
        super(LinearModel,self).__init__() # 直接写super().__init__()也行
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x): # 前向传播函数,就必须要叫这个名字,因为 nn.Module 类的call方法里调用了名为forward函数
        y_pred = self.linear(x)
        return y_pred
model = LinearModel()

# 其中反向传播的计算,是自动进行的,所有继承自Module的类,都如此。

示例:

python 复制代码
import torch
from torch import nn

class testNet(nn.Module):
	def __init__(self):
		super(testNet, self).__init__()

	def forward(self, input):
		output = input + 4
		return output

first_net = testNet()
x = torch.tensor(1.0)
output = first_net(x) # 因为 nn.Module 类的call方法里调用了名为forward函数,所以这里可以直接将实例当做函数使用。
print(output)
------------------------------------------------------------------------------------------------------------------
# 运行结果
tensor(5.)

(三) 神经网络训练套路(四部曲)

其中的损失函数、优化器,以及训练循环体后面会详细讲解

准备数据集 → 设计模型 → 创建损失函数和优化器 → 写训练循环体。

以逻辑回归为例:


上一篇 下一篇
神经网络入门实战(八) 神经网络入门实战(十)
相关推荐
知识鱼丸8 分钟前
【杂记】机器视觉 #opencv #numpy #matplotlib
人工智能·opencv·计算机视觉
努力进修40 分钟前
【机器学习】量子机器学习:当量子计算遇上人工智能,颠覆即将来临?
人工智能·机器学习·量子计算
梓羽玩Python1 小时前
6.3K Star 超酷的AI简历优化工具!简历优化必备神器,提升求职成功率!
人工智能·开源·github
T06205141 小时前
【顶刊复刻】人工智能技术应用如何影响企业创新(2007-2023年)
人工智能
努力进修2 小时前
【机器学习】农业 4.0 背后的智慧引擎:机器学习助力精准农事决策
人工智能·机器学习
程序员爱德华2 小时前
深度学习与计算机视觉 (博士)
深度学习·神经网络
Galaxy_12292 小时前
使用ros_readbagfile脚本提取感兴趣的话题
人工智能·机器人·自动驾驶
martian6652 小时前
【人工智能计算机视觉】——深入详解人工智能计算机视觉之图像处理之基础图像处理技术
图像处理·人工智能·计算机视觉
W Y2 小时前
【AI-21】深度学习框架中的神经网络
人工智能·深度学习·神经网络
无水先生2 小时前
在大型语言模型LLM中使用私有数据
人工智能·深度学习