神经网络入门实战:(九)分类问题 → 神经网络模型搭建模版和训练四步曲

(一) 神经网络模型搭建官方文档

每一层基本都有权重和偏置,可以仔细看官方文档。

pytorch 官网的库:torch.nn --- PyTorch 2.5 documentation

  • Containers库:用来搭建神经网络框架(包含所有的神经网络的框架);
  • ++特征提取:++
    • Convolution Layers:用来搭建卷积层;
    • Pooling layers:用来搭建池化层;
    • Padding Layers:用来搭建填充层;
  • ++分类:++
    • Linear Layers:用来搭建全连接层。

(二) 神经网络模型模版(Containers库中的nn.Module)

在写代码的过程中,通常会把神经网络定义成一个类(class),其模版就如下所示:

python 复制代码
# 我们的模型类应该继承自nn.Module,这是所有神经网络模块的基类。
# 每个模型类中,都必须要定义以下两个
class LinearModel(torch.nn.Module): # 其中nn是神经网络neural network的缩写
    def __init__(self): # 构造函数,初始化对象时调用的函数,名字也不能变
        super(LinearModel,self).__init__() # 直接写super().__init__()也行
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x): # 前向传播函数,就必须要叫这个名字,因为 nn.Module 类的call方法里调用了名为forward函数
        y_pred = self.linear(x)
        return y_pred
model = LinearModel()

# 其中反向传播的计算,是自动进行的,所有继承自Module的类,都如此。

示例:

python 复制代码
import torch
from torch import nn

class testNet(nn.Module):
	def __init__(self):
		super(testNet, self).__init__()

	def forward(self, input):
		output = input + 4
		return output

first_net = testNet()
x = torch.tensor(1.0)
output = first_net(x) # 因为 nn.Module 类的call方法里调用了名为forward函数,所以这里可以直接将实例当做函数使用。
print(output)
------------------------------------------------------------------------------------------------------------------
# 运行结果
tensor(5.)

(三) 神经网络训练套路(四部曲)

其中的损失函数、优化器,以及训练循环体后面会详细讲解

准备数据集 → 设计模型 → 创建损失函数和优化器 → 写训练循环体。

以逻辑回归为例:


上一篇 下一篇
神经网络入门实战(八) 神经网络入门实战(十)
相关推荐
酌沧几秒前
大模型量化技术全解析
人工智能·python·算法
进击monkey6 分钟前
2025年企业级AI知识库深度横评:PandaWiki如何以开源生态重构知识管理范式
人工智能·开源·开源软件
数据门徒7 分钟前
《人工智能现代方法(第4版)》 第11章 自动规划 学习笔记
人工智能·笔记·学习
老蒋新思维8 分钟前
创客匠人万人峰会启示:AI+IP 生态重构,知识变现进入 “共生增长” 时代
网络·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
nwsuaf_huasir9 分钟前
深度学习1.4-pytorch安装
人工智能·pytorch·深度学习
MobotStone10 分钟前
AI使用的10种最佳实践:提高你的工作效率和输出质量
人工智能·架构
沫儿笙10 分钟前
安川焊接机器人氩气节气秘诀
人工智能·机器人
AI浩11 分钟前
通过因果视觉提示实现单源域泛化目标检测
人工智能·目标检测·目标跟踪
说私域16 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的线上向线下导流运营研究
人工智能·小程序·开源
AI营销资讯站17 分钟前
2025社群运营AI工具TOP榜:从自动化话术到AI CRM系统的终极演进
大数据·人工智能