神经网络入门实战:(九)分类问题 → 神经网络模型搭建模版和训练四步曲

(一) 神经网络模型搭建官方文档

每一层基本都有权重和偏置,可以仔细看官方文档。

pytorch 官网的库:torch.nn --- PyTorch 2.5 documentation

  • Containers库:用来搭建神经网络框架(包含所有的神经网络的框架);
  • ++特征提取:++
    • Convolution Layers:用来搭建卷积层;
    • Pooling layers:用来搭建池化层;
    • Padding Layers:用来搭建填充层;
  • ++分类:++
    • Linear Layers:用来搭建全连接层。

(二) 神经网络模型模版(Containers库中的nn.Module)

在写代码的过程中,通常会把神经网络定义成一个类(class),其模版就如下所示:

python 复制代码
# 我们的模型类应该继承自nn.Module,这是所有神经网络模块的基类。
# 每个模型类中,都必须要定义以下两个
class LinearModel(torch.nn.Module): # 其中nn是神经网络neural network的缩写
    def __init__(self): # 构造函数,初始化对象时调用的函数,名字也不能变
        super(LinearModel,self).__init__() # 直接写super().__init__()也行
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x): # 前向传播函数,就必须要叫这个名字,因为 nn.Module 类的call方法里调用了名为forward函数
        y_pred = self.linear(x)
        return y_pred
model = LinearModel()

# 其中反向传播的计算,是自动进行的,所有继承自Module的类,都如此。

示例:

python 复制代码
import torch
from torch import nn

class testNet(nn.Module):
	def __init__(self):
		super(testNet, self).__init__()

	def forward(self, input):
		output = input + 4
		return output

first_net = testNet()
x = torch.tensor(1.0)
output = first_net(x) # 因为 nn.Module 类的call方法里调用了名为forward函数,所以这里可以直接将实例当做函数使用。
print(output)
------------------------------------------------------------------------------------------------------------------
# 运行结果
tensor(5.)

(三) 神经网络训练套路(四部曲)

其中的损失函数、优化器,以及训练循环体后面会详细讲解

准备数据集 → 设计模型 → 创建损失函数和优化器 → 写训练循环体。

以逻辑回归为例:


上一篇 下一篇
神经网络入门实战(八) 神经网络入门实战(十)
相关推荐
海绵宝宝de派小星3 分钟前
经典CNN架构:LeNet、AlexNet、VGG、GoogLeNet、ResNet
人工智能·神经网络·ai·cnn
Fleshy数模4 分钟前
深度学习入门:从神经网络构造到模型训练全解析
人工智能·深度学习·神经网络
多恩Stone5 分钟前
【3D-AICG 系列-3】Trellis 2 的O-voxel (下) Material: Volumetric Surface Attributes
人工智能·3d·aigc
八月瓜科技8 分钟前
2026春晚机器人专利战:从舞台秀到资本竞逐的产业突围
大数据·人工智能·microsoft·机器人·娱乐
多恩Stone9 分钟前
【3D-AICG 系列-1】Trellis v1 和 Trellis v2 的区别和改进
人工智能·pytorch·python·算法·3d·aigc
BestSongC14 分钟前
基于 YOLO11 的智能行人摔倒检测系统
人工智能·深度学习·yolo·目标检测
LaughingZhu15 分钟前
Product Hunt 每日热榜 | 2026-02-05
大数据·数据库·人工智能·经验分享·搜索引擎·产品运营
子非鱼92121 分钟前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
爱吃羊的老虎23 分钟前
【大模型开发】学习笔记一:RAG & LangChain 实战核心笔记
人工智能·笔记·语言模型·langchain
春日见29 分钟前
window wsl环境: autoware有日志,没有rviz界面/ autoware起不来
linux·人工智能·算法·机器学习·自动驾驶