神经网络入门实战:(九)分类问题 → 神经网络模型搭建模版和训练四步曲

(一) 神经网络模型搭建官方文档

每一层基本都有权重和偏置,可以仔细看官方文档。

pytorch 官网的库:torch.nn --- PyTorch 2.5 documentation

  • Containers库:用来搭建神经网络框架(包含所有的神经网络的框架);
  • ++特征提取:++
    • Convolution Layers:用来搭建卷积层;
    • Pooling layers:用来搭建池化层;
    • Padding Layers:用来搭建填充层;
  • ++分类:++
    • Linear Layers:用来搭建全连接层。

(二) 神经网络模型模版(Containers库中的nn.Module)

在写代码的过程中,通常会把神经网络定义成一个类(class),其模版就如下所示:

python 复制代码
# 我们的模型类应该继承自nn.Module,这是所有神经网络模块的基类。
# 每个模型类中,都必须要定义以下两个
class LinearModel(torch.nn.Module): # 其中nn是神经网络neural network的缩写
    def __init__(self): # 构造函数,初始化对象时调用的函数,名字也不能变
        super(LinearModel,self).__init__() # 直接写super().__init__()也行
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x): # 前向传播函数,就必须要叫这个名字,因为 nn.Module 类的call方法里调用了名为forward函数
        y_pred = self.linear(x)
        return y_pred
model = LinearModel()

# 其中反向传播的计算,是自动进行的,所有继承自Module的类,都如此。

示例:

python 复制代码
import torch
from torch import nn

class testNet(nn.Module):
	def __init__(self):
		super(testNet, self).__init__()

	def forward(self, input):
		output = input + 4
		return output

first_net = testNet()
x = torch.tensor(1.0)
output = first_net(x) # 因为 nn.Module 类的call方法里调用了名为forward函数,所以这里可以直接将实例当做函数使用。
print(output)
------------------------------------------------------------------------------------------------------------------
# 运行结果
tensor(5.)

(三) 神经网络训练套路(四部曲)

其中的损失函数、优化器,以及训练循环体后面会详细讲解

准备数据集 → 设计模型 → 创建损失函数和优化器 → 写训练循环体。

以逻辑回归为例:


上一篇 下一篇
神经网络入门实战(八) 神经网络入门实战(十)
相关推荐
imbackneverdie10 小时前
2026国自然项目申请指南发布,今年有什么新举措?
人工智能·科研·博士·国自然·ai工具·国家自然科学基金
m0_7373025810 小时前
智能化:AI 驱动的全生命周期管理
人工智能
人工智能AI技术10 小时前
【Agent从入门到实践】11 执行模块:Agent如何“完成动作”
人工智能
一招定胜负10 小时前
基于OpenCV的银行卡号识别项目实战
人工智能·opencv·计算机视觉
无代码专家11 小时前
低代码构建数据管理系统:选型逻辑与实践路径
人工智能·低代码
无代码专家11 小时前
低代码搭建项目管理平台:易用性导向的实践方案
人工智能·低代码
KKKlucifer11 小时前
AI赋能与全栈适配:安全运维新范式的演进与实践
人工智能·安全
许泽宇的技术分享11 小时前
当AI学会拍短剧:Huobao Drama全栈AI短剧生成平台深度解析
人工智能
爱喝可乐的老王11 小时前
机器学习监督学习模型--线性回归
人工智能·机器学习·线性回归
金融Tech趋势派11 小时前
2025企业微信私有化部署优秀服务商:微盛·企微管家方案解析
人工智能·企业微信·scrm