神经网络入门实战:(九)分类问题 → 神经网络模型搭建模版和训练四步曲

(一) 神经网络模型搭建官方文档

每一层基本都有权重和偏置,可以仔细看官方文档。

pytorch 官网的库:torch.nn --- PyTorch 2.5 documentation

  • Containers库:用来搭建神经网络框架(包含所有的神经网络的框架);
  • ++特征提取:++
    • Convolution Layers:用来搭建卷积层;
    • Pooling layers:用来搭建池化层;
    • Padding Layers:用来搭建填充层;
  • ++分类:++
    • Linear Layers:用来搭建全连接层。

(二) 神经网络模型模版(Containers库中的nn.Module)

在写代码的过程中,通常会把神经网络定义成一个类(class),其模版就如下所示:

python 复制代码
# 我们的模型类应该继承自nn.Module,这是所有神经网络模块的基类。
# 每个模型类中,都必须要定义以下两个
class LinearModel(torch.nn.Module): # 其中nn是神经网络neural network的缩写
    def __init__(self): # 构造函数,初始化对象时调用的函数,名字也不能变
        super(LinearModel,self).__init__() # 直接写super().__init__()也行
        self.linear = torch.nn.Linear(1,1)
    def forward(self, x): # 前向传播函数,就必须要叫这个名字,因为 nn.Module 类的call方法里调用了名为forward函数
        y_pred = self.linear(x)
        return y_pred
model = LinearModel()

# 其中反向传播的计算,是自动进行的,所有继承自Module的类,都如此。

示例:

python 复制代码
import torch
from torch import nn

class testNet(nn.Module):
	def __init__(self):
		super(testNet, self).__init__()

	def forward(self, input):
		output = input + 4
		return output

first_net = testNet()
x = torch.tensor(1.0)
output = first_net(x) # 因为 nn.Module 类的call方法里调用了名为forward函数,所以这里可以直接将实例当做函数使用。
print(output)
------------------------------------------------------------------------------------------------------------------
# 运行结果
tensor(5.)

(三) 神经网络训练套路(四部曲)

其中的损失函数、优化器,以及训练循环体后面会详细讲解

准备数据集 → 设计模型 → 创建损失函数和优化器 → 写训练循环体。

以逻辑回归为例:


上一篇 下一篇
神经网络入门实战(八) 神经网络入门实战(十)
相关推荐
许泽宇的技术分享3 分钟前
当AI学会“自己动手,丰衣足食“:深度剖析AgentGPT的自主智能之路
人工智能
CS创新实验室4 分钟前
计算机视觉:从感知到生成的产业变革与未来展望
人工智能·计算机视觉
水如烟10 分钟前
孤能子视角:数字时代,城乡生活的反转
人工智能
qq_3482318514 分钟前
Spring AI核心知识点
java·人工智能·spring
AI街潜水的八角14 分钟前
番茄成熟度检测和识别3:基于深度学习YOLOv12神经网络实现番茄成熟度检测和识别(含训练代码、数据集和GUI交互界面)
深度学习·神经网络·yolo
测试人社区—527216 分钟前
破茧成蝶:DevOps流水线测试环节的效能跃迁之路
运维·前端·人工智能·git·测试工具·自动化·devops
Wild_Pointer.23 分钟前
深入浅出OpenCV:查阅OpenCV的实现源码
人工智能·opencv·计算机视觉
像风没有归宿a24 分钟前
AI驱动金融:智能投顾、风控与反欺诈的实战案例
人工智能
聆风吟º25 分钟前
openEuler实战:AI场景进程调度性能全面验证
人工智能·ai·openeulei
阿杰学AI32 分钟前
AI核心知识37——大语言模型之ASI(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agi·asi·超人工智能