浅论数据分析的智能化和自动化趋势

浅论数据分析的智能化自动化趋势

回顾这半年学到的东西,最近体会到数据分析有智能化的趋势,体现在机器学习模型出现在各个数据分析环节,进而导致了数据分析自动化的趋势,即数据分析的各个环节越来越少地需要人工的干预。

首先,接触到是Boruta算法的流行,这是一个用机器学习模型进行相关变量筛选的算法,最早介绍是在2010年,替代的是传统的根据统计学方法结合临床重要性(主观因素),比如P值和Pearson相关性(热图),或线性回归方法,比如Lasso。传统的方法一般都需要人工参与决定变量筛选的标准,比如P值是0.1还是0.05,Lasso的lambda参数是最小值还是其它,而相对Boruta算法的特点是不需要人工选择,不是说没有参数可以设置,而是设置和不设置结果差别不大。

后来,了解到数据缺失值的补充有一个python包叫做datawig,同样是使用机器(深度)学习的算法对缺失数据,包括分类数据和数值数据,进行插补。传统的变量插补的方法,因为不够智能,需要人为地去判断或选择一些插补的方法或者参数,而机器学习的方法明显的特点是少人工干预。

再后来,就是最近和大家介绍的,机器学习+SHAP分析深入分析变量间关系,可以展现变量间的相关性的趋势和关键点以及交互作用,全程也不需要进行太多的干预。

以上方法逐渐形成一种趋势,体现出两点,1.机器学习算法在数据分析领域的应用;2. 数据分析的自动化趋势。之前数据分析过程中需要人工参与的环节,比如变量筛选环节和数据插补环节,因为机器学习的介入,已经不需要太多人工的参与,体现智能化和自动化的趋势。智能化和自动化是一直以来的趋势,变成现实,可能就在最近。

相关推荐
羽星_s4 分钟前
文本分类任务Qwen3-0.6B与Bert:实验见解
人工智能·bert·文本分类·ai大模型·qwen3
摸鱼仙人~5 分钟前
TensorFlow/Keras实现知识蒸馏案例
人工智能·tensorflow·keras
小白学大数据9 分钟前
Scrapy框架下地图爬虫的进度监控与优化策略
开发语言·爬虫·python·scrapy·数据分析
浊酒南街10 分钟前
TensorFlow之微分求导
人工智能·python·tensorflow
羽凌寒15 分钟前
曝光融合(Exposure Fusion)
图像处理·人工智能·计算机视觉
lucky_lyovo23 分钟前
机器学习-特征工程
人工智能·机器学习
alpszero28 分钟前
YOLO11解决方案之对象裁剪探索
人工智能·python·计算机视觉·yolo11
Matlab仿真实验室1 小时前
基于Matlab实现图像透明叠加程序
人工智能·计算机视觉·matlab
蹦蹦跳跳真可爱5891 小时前
Python----神经网络(基于DNN的风电功率预测)
人工智能·pytorch·python·深度学习·神经网络·dnn
Jackson@ML1 小时前
一分钟了解机器学习
人工智能·机器学习