数学建模——Topsis法

数模评价类(2)------Topsis法

概述

Topsis:Technique for Order Preference by Similarity to Ideal Solution

也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个方案的优劣。

案例

已知下列20条河流几项指标数据,指标有含氧量、PH值、细菌总数、植物性营养物量,试对20条河流的水质进行评价和排序。

思考:适不适合使用层次分析法进行评价?

答:不适合。原因:1、决策层的方案数为20>15,很难构造通过一致性检验的判断矩阵,并且一致性检验中RI可查的最大n为15;2、若使用层次分析法,没有充分利用已知方案各向指标数据进行评价。

数据集基本概念:

如案例中所给数据表格构成一个典型的数据集,每一行代表一个记录/数据项/对象,

第一列构成索引列(index),除每一列外每一列代表一个指标/特征

Topsis步骤

Step1:正向化处理

指标分类:

在该案例中,极大型:含氧量,极小型:细菌含量,中间型:PH值,区间型:营养量

正向化处理即将所有指标转化为极大型指标

符号说明:x代表数据集中对应特征的一列, x i x_i xi表示该列第i行元素

极小型->极大型
x i ^ = m a x { x } − x i \hat{x_{i}}=max\{x\}-x_{i}\\ xi^=max{x}−xi

如果所有元素为正数,可取倒数实现正向化

中间型->极大型
x i ^ = 1 − x i − x b e s t m a x { x i − x b e s t } \hat{x_i}=1-\frac{x_i-x_{best}}{max\{x_i-x_{best}\}} xi^=1−max{xi−xbest}xi−xbest

注:这种正向化处理将数据值映射到[0,1],数据越趋近中间理想值,映射值越趋近于1

区间型->极大型

注:区间型指标正向化需考虑左右两侧,类似中间型指标的正向化方法,当两侧值越趋近理想趋近边界值时,映射值越趋近于1

Step2:正向化矩阵标准化

标准化处理是矩阵预处理中基础性的步骤,其目的是消除不同指标量纲的影响,这里采用向量归一化(也称为L2正则化,即将每一列向量转化为单位特征列向量)

Step3:计算得分并归一化

Topsis优劣解的核心思想就是先确定两个正(负)理想的数据向量,然后将每个对象数据向量对其评分。由于我们已经将所有指标正向化,因此抽出每一列的最大值构成最大值向量 Z + Z_{+} Z+,抽出每一列的最小值构成最小值向量 Z − Z_{-} Z−,对于每个评价对象数据向量 Z i Z_i Zi,我们可以用向量距离公式计算 Z i Z_i Zi与 Z + Z_{+} Z+和 Z − Z_{-} Z−​的距离 D i + 和 D i − D_i^{+}和D_i^{-} Di+和Di−,然后得到每个对象未归一化的评分
S i = D i − D i − + D i + S_i=\frac{D_i^{-}}{D_i^{-}+D_i^{+}} Si=Di−+Di+Di−

归一化后就得到各对象最终评分

考虑指标权重系数,对算法进行修改

权重系数可由构造判断矩阵法得到,也可以由熵权法【后续讨论】得到

运行python代码结果:

简要分析结果可知I、J、K河流水质最好,N河流水质明显最差

相关推荐
金融OG3 小时前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
spssau4 小时前
2025美赛倒计时,数学建模五类模型40+常用算法及算法手册汇总
算法·数学建模·数据分析·spssau
C灿灿数模16 小时前
2025美赛数学建模B题思路+模型+代码+论文
数学建模
金融OG1 天前
99.12 金融难点通俗解释:毛利率
python·算法·机器学习·数学建模·金融
小笼包数模2 天前
2025年美国大学生数学建模竞赛赛前准备计划
数学建模
Better Rose2 天前
2025美赛Latex模板可直接运行!O奖自用版
数学建模·latex·template method·美赛
Better Rose2 天前
【数学建模美赛速成系列】O奖论文绘图复现代码
数学建模·matlab
放牛儿2 天前
2024年美赛C题评委文章及O奖论文解读 | AI工具如何影响数学建模?从评委和O奖论文出发-O奖论文做对了什么?
人工智能·数学建模
星辰大海9363 天前
靠右行驶数学建模分析(2014MCM美赛A题)
数学建模
一只码代码的章鱼3 天前
分类问题(二元,多元逻辑回归,费歇尔判别分析)spss实操
大数据·数学建模·分类·数据挖掘·逻辑回归