opencv图像填充

python 复制代码
import time  # 导入time模块,用于处理时间相关的功能
import cv2  # 导入OpenCV模块,用于图像处理
# 创建窗口
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # 创建一个名为'window'的窗口,窗口大小自动调整,用户不能手动调整大小
cat = cv2.imread("./9.jpg", 1)  # 使用OpenCV的imread函数读取图片,路径为当前目录下的9.jpg,参数1表示读取彩色图像
# 定义上下左右边界的大小
top_size, bottom_size, left_size, right_size = (50, 50, 50, 50)
# 使用不同的边界类型创建图像边界
replicate = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
# BORDER_REPLICATE:复制边缘像素进行填充
BORDER_REFLECT = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT)
# BORDER_REFLECT:反射边缘像素进行填充
REFLECT101 = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT101)
# BORDER_REFLECT101:类似于BORDER_REFLECT,但是在边缘不会重复像素
WRAP = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_WRAP)
# BORDER_WRAP:包裹边缘像素进行填充,类似于纹理的重复
CONSTANT = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_CONSTANT, value=0)
# BORDER_CONSTANT:使用常量值进行填充,这里是黑色(0)
# 展示图像
cv2.imshow('window', cat)  # 在名为'window'的窗口中显示原始图像
cv2.imshow('replicate', replicate)  # 显示使用BORDER_REPLICATE填充的图像
cv2.imshow('BORDER_REFLECT', BORDER_REFLECT)  # 显示使用BORDER_REFLECT填充的图像
cv2.imshow('REFLECT101', REFLECT101)  # 显示使用BORDER_REFLECT101填充的图像
cv2.imshow('WRAP', WRAP)  # 显示使用BORDER_WRAP填充的图像
cv2.imshow('CONSTANT', CONSTANT)  # 显示使用BORDER_CONSTANT填充的图像
key = cv2.waitKey(0)  # 等待按键事件,参数0表示无限期等待,直到有按键被按下
# 检查按键是否为'q',如果是则销毁所有窗口
if key & 0xFF == ord('q'):  # 将按键的值与0xFF进行按位与操作,以获取正确的ASCII码值,并与'q'的ASCII码比较
    print("准备销毁窗口")  # 如果按下的是'q'键,则打印消息
    cv2.destroyAllWindows()  # 销毁所有OpenCV创建的窗口

· BORDER_REPLICATE:复制法,也就是复制最边缘像素。

·BORDER_ REFLECT :反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefg|hgfedcb

· BORDER_ REFLECT_101 :反射法,也就是以最边缘像素为轴,对称,gfedcl|abcdefgh|gfedcba

· BORDER_WRAP:外包装法defgh|abcdefg h|abcdelg

· BORDER CONSTANT :常量法,常数值填充。




相关推荐
i查拉图斯特拉如是10 分钟前
基于MindSpore NLP的PEFT微调
人工智能·自然语言处理
mahuifa15 分钟前
QtCreator配置github copilot实现AI辅助编程
人工智能·ai编程·github copilot·qtcreator
千穹凌帝18 分钟前
基于深度学习多图像融合的屏幕缺陷检测方案
人工智能·深度学习·数码相机
张叔zhangshu2 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
深度学习lover6 小时前
[项目代码] YOLOv8 遥感航拍飞机和船舶识别 [目标检测]
python·yolo·目标检测·计算机视觉·遥感航拍飞机和船舶识别
云起无垠6 小时前
【论文速读】| FirmRCA:面向 ARM 嵌入式固件的后模糊测试分析,并实现高效的基于事件的故障定位
人工智能·自动化
Leweslyh8 小时前
物理信息神经网络(PINN)八课时教案
人工智能·深度学习·神经网络·物理信息神经网络
love you joyfully9 小时前
目标检测与R-CNN——pytorch与paddle实现目标检测与R-CNN
人工智能·pytorch·目标检测·cnn·paddle
该醒醒了~9 小时前
PaddlePaddle推理模型利用Paddle2ONNX转换成onnx模型
人工智能·paddlepaddle
小树苗1939 小时前
DePIN潜力项目Spheron解读:激活闲置硬件,赋能Web3与AI
人工智能·web3