opencv图像填充

python 复制代码
import time  # 导入time模块,用于处理时间相关的功能
import cv2  # 导入OpenCV模块,用于图像处理
# 创建窗口
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # 创建一个名为'window'的窗口,窗口大小自动调整,用户不能手动调整大小
cat = cv2.imread("./9.jpg", 1)  # 使用OpenCV的imread函数读取图片,路径为当前目录下的9.jpg,参数1表示读取彩色图像
# 定义上下左右边界的大小
top_size, bottom_size, left_size, right_size = (50, 50, 50, 50)
# 使用不同的边界类型创建图像边界
replicate = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
# BORDER_REPLICATE:复制边缘像素进行填充
BORDER_REFLECT = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT)
# BORDER_REFLECT:反射边缘像素进行填充
REFLECT101 = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT101)
# BORDER_REFLECT101:类似于BORDER_REFLECT,但是在边缘不会重复像素
WRAP = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_WRAP)
# BORDER_WRAP:包裹边缘像素进行填充,类似于纹理的重复
CONSTANT = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_CONSTANT, value=0)
# BORDER_CONSTANT:使用常量值进行填充,这里是黑色(0)
# 展示图像
cv2.imshow('window', cat)  # 在名为'window'的窗口中显示原始图像
cv2.imshow('replicate', replicate)  # 显示使用BORDER_REPLICATE填充的图像
cv2.imshow('BORDER_REFLECT', BORDER_REFLECT)  # 显示使用BORDER_REFLECT填充的图像
cv2.imshow('REFLECT101', REFLECT101)  # 显示使用BORDER_REFLECT101填充的图像
cv2.imshow('WRAP', WRAP)  # 显示使用BORDER_WRAP填充的图像
cv2.imshow('CONSTANT', CONSTANT)  # 显示使用BORDER_CONSTANT填充的图像
key = cv2.waitKey(0)  # 等待按键事件,参数0表示无限期等待,直到有按键被按下
# 检查按键是否为'q',如果是则销毁所有窗口
if key & 0xFF == ord('q'):  # 将按键的值与0xFF进行按位与操作,以获取正确的ASCII码值,并与'q'的ASCII码比较
    print("准备销毁窗口")  # 如果按下的是'q'键,则打印消息
    cv2.destroyAllWindows()  # 销毁所有OpenCV创建的窗口

· BORDER_REPLICATE:复制法,也就是复制最边缘像素。

·BORDER_ REFLECT :反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefg|hgfedcb

· BORDER_ REFLECT_101 :反射法,也就是以最边缘像素为轴,对称,gfedcl|abcdefgh|gfedcba

· BORDER_WRAP:外包装法defgh|abcdefg h|abcdelg

· BORDER CONSTANT :常量法,常数值填充。




相关推荐
岁月宁静几秒前
在富文本编辑器中封装实用的 AI 写作助手功能
前端·vue.js·人工智能
末世灯光2 分钟前
时间序列入门第一问:它和普通数据有什么不一样?(附 3 类典型案例)
人工智能·python·机器学习·时序数据
Yann-企业信息化7 分钟前
AI 开发工具对比:Dify 与 Coze Studio(开源版)差异对比
人工智能·开源
2401_8369003311 分钟前
YOLOv4:集大成的目标检测王者
人工智能·yolov4
Xi xi xi15 分钟前
苏州唯理科技近期也正式发布了国内首款神经腕带产品
大数据·人工智能·经验分享·科技
www.0215 分钟前
微信克隆人,聊天记录训练专属AI(2.WeClone训练模型)
人工智能·python·微信·聊天克隆人·微信克隆人
熊猫钓鱼>_>28 分钟前
基于知识图谱的智能会议纪要系统:从语音识别到深度理解
人工智能·语音识别·知识图谱
拓端研究室1 小时前
专题:2025年游戏科技的AI革新研究报告:全球市场趋势研究报告|附130+份报告PDF、数据仪表盘汇总下载
人工智能
茜茜西西CeCe2 小时前
数字图像处理-图像的形态学处理(2)
计算机视觉·图像分割·数字图像处理·图像的形态学处理·顶帽变换·图像细化
CSTechEi2 小时前
【SPIE/EI/Scopus检索】2026 年第三届数据挖掘与自然语言处理国际会议 (DMNLP 2026)
人工智能·自然语言处理·数据挖掘