opencv图像填充

python 复制代码
import time  # 导入time模块,用于处理时间相关的功能
import cv2  # 导入OpenCV模块,用于图像处理
# 创建窗口
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # 创建一个名为'window'的窗口,窗口大小自动调整,用户不能手动调整大小
cat = cv2.imread("./9.jpg", 1)  # 使用OpenCV的imread函数读取图片,路径为当前目录下的9.jpg,参数1表示读取彩色图像
# 定义上下左右边界的大小
top_size, bottom_size, left_size, right_size = (50, 50, 50, 50)
# 使用不同的边界类型创建图像边界
replicate = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
# BORDER_REPLICATE:复制边缘像素进行填充
BORDER_REFLECT = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT)
# BORDER_REFLECT:反射边缘像素进行填充
REFLECT101 = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REFLECT101)
# BORDER_REFLECT101:类似于BORDER_REFLECT,但是在边缘不会重复像素
WRAP = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_WRAP)
# BORDER_WRAP:包裹边缘像素进行填充,类似于纹理的重复
CONSTANT = cv2.copyMakeBorder(cat, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_CONSTANT, value=0)
# BORDER_CONSTANT:使用常量值进行填充,这里是黑色(0)
# 展示图像
cv2.imshow('window', cat)  # 在名为'window'的窗口中显示原始图像
cv2.imshow('replicate', replicate)  # 显示使用BORDER_REPLICATE填充的图像
cv2.imshow('BORDER_REFLECT', BORDER_REFLECT)  # 显示使用BORDER_REFLECT填充的图像
cv2.imshow('REFLECT101', REFLECT101)  # 显示使用BORDER_REFLECT101填充的图像
cv2.imshow('WRAP', WRAP)  # 显示使用BORDER_WRAP填充的图像
cv2.imshow('CONSTANT', CONSTANT)  # 显示使用BORDER_CONSTANT填充的图像
key = cv2.waitKey(0)  # 等待按键事件,参数0表示无限期等待,直到有按键被按下
# 检查按键是否为'q',如果是则销毁所有窗口
if key & 0xFF == ord('q'):  # 将按键的值与0xFF进行按位与操作,以获取正确的ASCII码值,并与'q'的ASCII码比较
    print("准备销毁窗口")  # 如果按下的是'q'键,则打印消息
    cv2.destroyAllWindows()  # 销毁所有OpenCV创建的窗口

· BORDER_REPLICATE:复制法,也就是复制最边缘像素。

·BORDER_ REFLECT :反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefg|hgfedcb

· BORDER_ REFLECT_101 :反射法,也就是以最边缘像素为轴,对称,gfedcl|abcdefgh|gfedcba

· BORDER_WRAP:外包装法defgh|abcdefg h|abcdelg

· BORDER CONSTANT :常量法,常数值填充。




相关推荐
wuhanwhite6 分钟前
Google的A2A协议:AI智能体世界的“社交网络”即将崛起?
人工智能·google
syounger10 分钟前
宝马集团加速 ERP 转型和上云之旅
大数据·人工智能
自由鬼14 分钟前
通过MCP+数据库实现AI检索和分析
数据库·人工智能·ai
AIBox36516 分钟前
GPT文生图模型新玩法
人工智能·gpt·aigc
EasyNTS44 分钟前
ONVIF/RTSP/RTMP协议EasyCVR视频汇聚平台RTMP协议配置全攻略 | 直播推流实战教程
大数据·网络·人工智能·音视频
知舟不叙1 小时前
OpenCV图像形态学详解
人工智能·opencv·计算机视觉·图像形态学
訾博ZiBo1 小时前
🔥 学习效率原地起飞!我用这两个 AI Prompts + 一个麦克风,彻底颠覆了我的学习方式!
人工智能
范桂飓1 小时前
案例分析:东华新径,拉动式生产的智造之路
大数据·人工智能
涛涛讲AI1 小时前
wkhtmltopdf生成图片的实践教程,包含完整的环境配置、参数解析及多语言调用示例
人工智能·html·htmltoimage
小和尚同志2 小时前
8.9k Star!使用 AI 学习 Dify 项目的系统设计图
人工智能·aigc