力扣第89题 格雷编码

题目描述

格雷编码序列是一个二进制数字序列,其中的每两个相邻的数字只有一个二进制位不同。给定一个整数 n,表示格雷编码的位数,要求返回 n 位的格雷编码序列。

示例 1

输入

plaintext 复制代码
n = 2

输出

plaintext 复制代码
[0, 1, 3, 2]

解释

  • 对于 n = 2,对应的格雷编码序列为 [00, 01, 11, 10],它们的十进制表示为 [0, 1, 3, 2]

示例 2

输入

plaintext 复制代码
n = 3

输出

plaintext 复制代码
[0, 1, 3, 2, 6, 7, 5, 4]

解释

  • 对于 n = 3,对应的格雷编码序列为 [000, 001, 011, 010, 110, 111, 101, 100],它们的十进制表示为 [0, 1, 3, 2, 6, 7, 5, 4]

解题思路

格雷编码序列的生成有两种常见方法:

  1. 递归法
  2. 数学公式法

方法 1:递归法(构建反射法)

递归的核心思想是:

  1. 通过已有的 n n n 位的格雷编码序列,构建 n + 1 n+1 n+1 位的格雷编码序列。
  2. 假设已有 n n n 位的格雷编码序列为 G(n),我们可以通过以下方法得到 G(n+1)
    • G(n+1) 的前半部分是 G(n) 本身。
    • G(n+1) 的后半部分是 G(n) 的每个元素前面加上一个 1,并且反转原序列的顺序。

举个例子:

  • 对于 n = 1,格雷编码序列是 [0, 1]
  • 对于 n = 2,格雷编码序列是 [00, 01, 11, 10]

方法 2:数学公式法

格雷编码的数学公式为:
G ( k ) = k ⊕ ( k > > 1 ) G(k) = k \oplus (k >> 1) G(k)=k⊕(k>>1)

其中, k k k 是当前的数字, k > > 1 k >> 1 k>>1 是 k k k 右移一位, k ⊕ ( k > > 1 ) k \oplus (k >> 1) k⊕(k>>1) 是 k k k 与右移后的 k k k 进行按位异或操作。

使用该公式可以快速生成格雷编码序列。


代码实现

方法 1:递归法

c 复制代码
#include <stdio.h>
#include <stdlib.h>

int* grayCode(int n, int* returnSize) {
    *returnSize = 1 << n;  // 返回的序列长度为 2^n
    int* result = (int*)malloc(sizeof(int) * (*returnSize));

    // 初始的 0 位格雷编码
    result[0] = 0;

    for (int i = 1; i <= n; i++) {
        int size = 1 << (i - 1);  // 当前格雷编码的长度
        for (int j = size - 1; j >= 0; j--) {
            result[size + j] = result[j] | (1 << (i - 1));  // 更新后半部分
        }
    }
    
    return result;
}

void printArray(int* arr, int size) {
    for (int i = 0; i < size; i++) {
        printf("%d", arr[i]);
        if (i < size - 1) printf(", ");
    }
    printf("\n");
}

int main() {
    int n = 3;
    int returnSize = 0;
    int* result = grayCode(n, &returnSize);
    printArray(result, returnSize);
    free(result);
    return 0;
}

方法 2:数学公式法

c 复制代码
#include <stdio.h>
#include <stdlib.h>

int* grayCode(int n, int* returnSize) {
    *returnSize = 1 << n;  // 返回的序列长度为 2^n
    int* result = (int*)malloc(sizeof(int) * (*returnSize));

    for (int i = 0; i < *returnSize; i++) {
        result[i] = i ^ (i >> 1);  // 使用公式生成格雷编码
    }

    return result;
}

void printArray(int* arr, int size) {
    for (int i = 0; i < size; i++) {
        printf("%d", arr[i]);
        if (i < size - 1) printf(", ");
    }
    printf("\n");
}

int main() {
    int n = 3;
    int returnSize = 0;
    int* result = grayCode(n, &returnSize);
    printArray(result, returnSize);
    free(result);
    return 0;
}

代码详解

1. 递归法实现

  • 我们从最简单的格雷编码 [0] 开始,逐步扩展到 n n n 位。
  • 每次扩展时,通过反射法创建新的序列:
    • 将已有的序列复制到前半部分。
    • 将每个数值在前面加上 1,并将该部分的顺序反转,加入到后半部分。

2. 数学公式法实现

  • 通过公式 G ( k ) = k ⊕ ( k > > 1 ) G(k) = k \oplus (k >> 1) G(k)=k⊕(k>>1) 来计算每个数字的格雷编码。
  • 通过位运算,我们可以在 O ( 1 ) O(1) O(1) 的时间内生成每个数字的格雷编码。

时间与空间复杂度

时间复杂度

  • 对于递归法:生成每一位的格雷编码序列时,需要 O ( 2 n ) O(2^n) O(2n) 的时间,因此时间复杂度是 O ( 2 n ) O(2^n) O(2n)。
  • 对于数学公式法:直接计算每个数字的格雷编码,因此时间复杂度是 O ( 2 n ) O(2^n) O(2n)。

空间复杂度

  • 对于两种方法:需要存储生成的格雷编码序列,空间复杂度是 O ( 2 n ) O(2^n) O(2n)。

测试用例

示例 1:

输入

plaintext 复制代码
n = 2

输出

plaintext 复制代码
[0, 1, 3, 2]

示例 2:

输入

plaintext 复制代码
n = 3

输出

plaintext 复制代码
[0, 1, 3, 2, 6, 7, 5, 4]
相关推荐
小孟Java攻城狮4 小时前
leetcode-不同路径问题
算法·leetcode·职场和发展
查理零世4 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分
小猿_007 小时前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
熊文豪9 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
siy233311 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
吴秋霖11 小时前
最新百应abogus纯算还原流程分析
算法·abogus
灶龙12 小时前
浅谈 PID 控制算法
c++·算法
菜还不练就废了12 小时前
蓝桥杯算法日常|c\c++常用竞赛函数总结备用
c++·算法·蓝桥杯
金色旭光12 小时前
目标检测高频评价指标的计算过程
算法·yolo
he1010112 小时前
1/20赛后总结
算法·深度优先·启发式算法·广度优先·宽度优先