机器学习任务功略

loss如果大,训练资料没有学好,此时有两个可能:

1.model bias太过简单(找不到loss低的function)。

**解决办法:**增加输入的feacture,设一个更大的model,也可以用deep learning增加弹性。

2.optimization做得不好(合适的function确实存在但是无法正确选择出来)。
如何判断是上面的哪种情况?
  • 比较图像信息。(例如如果20层的network已经可以做得很好有很低的loss了,56层的明显错误便并不是model bias弹性不够导致的,是optimization做得不好)
  • 可以先看比较浅的network(model),因为它们不太会有optimization的问题。
  • 如果深层的model并没有包含更小的数据差,那就是optimization的问题。(例如↓)

看testing data

1.依旧很小,那很完美。
2.如果training data的loss小(并且确定model bias没有问题,optimization够大了)但是testing data的loss大有可能是overfitting。
  • 上面是个特例极端情况。
  • 正常来说:没有给足够的资料做为训练,因为model自由度很大就会导致overfitting。
解决方法:

1.增加训练资料。

2.data augmentation(用自己对问题的理解自己创造一些资料)。

注意:不能随便做,要是有道理的数据。根据对资料的特性,基于自己的理解,增加 data augmentation。

3.缩减弹性,写极限。

比如:减少神经元数目 或者 让model公用参数 或者 用比较少的features 或者 early stopping 或者 regularization 或者 drop out。

但是注意不要给模型太多的限制。限制太大了在测试上就没有好结果,也就导致了model bias。

相关推荐
程序员小袁44 分钟前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊2 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元2 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒2 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生3 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报4 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
AI小云4 小时前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
xiaohouzi1122334 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户125205597084 小时前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能
Juchecar4 小时前
一文讲清 nn.LayerNorm 层归一化
人工智能