语音识别、翻译及语音合成

Speech recognition, translation and speech synthesis.

python 复制代码
#语音识别、翻译及语音合成
#pip install SpeechRecognition gtts googletrans==3.1.0a0 pyaudio sounddevice soundfile keyboard

import speech_recognition as sr
from gtts import gTTS
from googletrans import Translator
import os
import time
import pyaudio
import logging
import argparse
import sounddevice as sd
import soundfile as sf
import numpy as np
import keyboard
import requests
from datetime import datetime

class SpeechTranslationApp:
    def __init__(self, source_language='en-US', target_language='zh-CN', input_type='microphone', save_transcript=False):
        """
        Initialize the Speech Translation Application
        
        :param source_language: Language of input speech
        :param target_language: Language to translate to
        :param input_type: Input method (microphone or system_sound)
        :param save_transcript: Whether to save speech recognition results
        """
        # Configure logging
        logging.basicConfig(
            level=logging.INFO, 
            format='%(asctime)s - %(levelname)s: %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S'
        )
        self.logger = logging.getLogger(__name__)

        # Speech recognition setup
        self.recognizer = sr.Recognizer()
        self.translator = Translator()
        
        # Configuration
        self.source_language = source_language
        self.target_language = target_language
        self.input_type = input_type
        self.save_transcript = save_transcript

        # Audio parameters
        self.CHUNK = 1024
        self.FORMAT = pyaudio.paInt16
        self.CHANNELS = 1
        self.RATE = 44100
        self.RECORD_SECONDS = 5

        # API endpoint (replace with the actual API URL from the GitHub project)
        self.ASR_API_URL = "https://api.example.com/asr"  # Update with actual API endpoint

    def recognize_speech(self):
        """
        Recognize speech from either microphone or system sound
        
        :return: Dictionary with recognition results
        """
        result = {
            'success': False,
            'text': None,
            'error': None
        }

        try:
            if self.input_type == "microphone":
                with sr.Microphone() as source:
                    self.logger.info(f"Listening (Language: {self.source_language})...")
                    audio = self.recognizer.listen(source, timeout=5, phrase_time_limit=5)
            elif self.input_type == "system_sound":
                # Record system audio using sounddevice
                self.logger.info(f"Capturing system sound (Language: {self.source_language})...")
                recording = sd.rec(
                    int(self.RECORD_SECONDS * self.RATE), 
                    samplerate=self.RATE, 
                    channels=self.CHANNELS
                )
                sd.wait()
                
                # Save recording to temporary file
                temp_audio_file = 'temp_system_audio.wav'
                sf.write(temp_audio_file, recording, self.RATE)
                
                # Convert to speech_recognition format
                with sr.AudioFile(temp_audio_file) as source:
                    audio = self.recognizer.record(source)
                
                # Clean up temporary file
                os.remove(temp_audio_file)
            else:
                raise ValueError("Invalid input type. Choose 'microphone' or 'system_sound'")

            # Recognize speech
            text = self.recognizer.recognize_google(audio, language=self.source_language)
            
            # Send to ASR API
            self.send_to_asr_api(audio)
            
            result['success'] = True
            result['text'] = text
            self.logger.info(f"Speech Recognition Result: {text}")
            
            # Save transcript if enabled
            if self.save_transcript:
                self.save_speech_to_file(text)

        except sr.WaitTimeoutError:
            result['error'] = "Listening timed out. No speech detected."
            self.logger.warning(result['error'])
        except sr.UnknownValueError:
            result['error'] = "Could not understand the audio"
            self.logger.warning(result['error'])
        except sr.RequestError as e:
            result['error'] = f"Could not request results from Google Speech Recognition service; {e}"
            self.logger.error(result['error'])
        except Exception as e:
            result['error'] = f"An unexpected error occurred: {e}"
            self.logger.error(result['error'])
        
        return result

    def send_to_asr_api(self, audio):
        """
        Send audio to ASR API for processing
        
        :param audio: Recognized audio data
        """
        try:
            # Convert audio to a format suitable for API upload
            audio_data = audio.get_wav_data()
            
            # Prepare files for upload
            files = {'audio': ('speech.wav', audio_data, 'audio/wav')}
            
            # Send to ASR API (replace with actual API call)
            response = requests.post(self.ASR_API_URL, files=files)
            
            if response.status_code == 200:
                self.logger.info("Successfully sent audio to ASR API")
            else:
                self.logger.warning(f"ASR API request failed with status {response.status_code}")
        
        except Exception as e:
            self.logger.error(f"Error sending audio to ASR API: {e}")

    def save_speech_to_file(self, text):
        """
        Save recognized speech to a text file
        
        :param text: Recognized text
        """
        try:
            # Create transcripts directory if it doesn't exist
            os.makedirs('transcripts', exist_ok=True)
            
            # Generate filename with timestamp
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"transcripts/speech_transcript_{timestamp}.txt"
            
            with open(filename, 'w', encoding='utf-8') as f:
                f.write(text)
            
            self.logger.info(f"Transcript saved to {filename}")
        
        except Exception as e:
            self.logger.error(f"Error saving transcript: {e}")

    def translate_text(self, text):
        """
        Translate text to target language
        
        :param text: Text to translate
        :return: Translated text
        """
        try:
            translation = self.translator.translate(text, dest=self.target_language)
            self.logger.info(f"Translation Result: {translation.text}")
            return translation.text
        except Exception as e:
            self.logger.error(f"Translation error: {e}")
            return None

    def speak_text(self, text):
        """
        Convert text to speech and play
        
        :param text: Text to convert to speech
        """
        try:
            tts = gTTS(text=text, lang=self.target_language)
            output_file = "translation_output.mp3"
            tts.save(output_file)
            
            # Cross-platform audio playback
            if os.name == 'nt':  # Windows
                os.system(f"start {output_file}")
            elif os.name == 'posix':  # macOS and Linux
                os.system(f"mpg123 {output_file}")
            
            # Remove temporary file after playback
            time.sleep(2)  # Give time for playback
            os.remove(output_file)
        except Exception as e:
            self.logger.error(f"Text-to-speech error: {e}")

    def run(self):
        """
        Main application loop
        """
        self.logger.info("Speech Translation App Started")
        
        print("Press 'Esc' to exit the application")
        
        try:
            while not keyboard.is_pressed('esc'):
                # Recognize speech
                recognition_result = self.recognize_speech()
                
                if recognition_result['success']:
                    # Translate recognized text
                    translated_text = self.translate_text(recognition_result['text'])
                    
                    if translated_text:
                        # Speak translated text
                        self.speak_text(translated_text)
                else:
                    # Log or handle unsuccessful recognition
                    if recognition_result['error']:
                        print(f"Recognition error: {recognition_result['error']}")
                
                # Pause to prevent excessive processing
                time.sleep(2)
        
        except KeyboardInterrupt:
            self.logger.info("Application stopped by user")
        finally:
            print("Speech Translation App Closed")

def main():
    """
    Parse command-line arguments and start the application
    """
    parser = argparse.ArgumentParser(description='Speech Translation Application')
    parser.add_argument('--source_lang', default='en-US', help='Source language code')
    parser.add_argument('--target_lang', default='zh-CN', help='Target language code')
    parser.add_argument('--input', choices=['microphone', 'system_sound'], default='microphone', help='Input method')
    parser.add_argument('--save_transcript', action='store_true', help='Save speech transcripts')
    
    args = parser.parse_args()
    
    app = SpeechTranslationApp(
        source_language=args.source_lang, 
        target_language=args.target_lang, 
        input_type=args.input,
        save_transcript=args.save_transcript
    )
    
    app.run()

if __name__ == "__main__":
    main()
相关推荐
凯_kyle几秒前
Python 算法竞赛 —— 基础篇(更新ing)
笔记·python·算法
天远Date Lab3 分钟前
Java微服务实战:聚合型“全能小微企业报告”接口的调用与数据清洗
java·大数据·python·微服务
ss2736 分钟前
阻塞队列:ArrayBlockingQueue如何用Lock与Condition实现高效并发控制
开发语言·python
_OP_CHEN16 分钟前
【Python基础】(三)Python 语法基础进阶:条件循环 + 实战案例,从入门到精通的核心跳板
开发语言·python·python入门·条件语句·循环语句·python基础语法
风儿你慢慢吹30 分钟前
python __init__.py的意义与使用
python
superman超哥34 分钟前
仓颉语言中网络套接字封装的深度剖析与工程实践
c语言·开发语言·c++·python·仓颉
陈天伟教授38 分钟前
人工智能训练师认证教程(4)OpenCV 快速实践
人工智能·python·神经网络·opencv·机器学习·计算机视觉
RAY_01041 小时前
Python—数据可视化pyecharts
开发语言·python
Lvan的前端笔记1 小时前
python:用 dotenv 管理环境变量&生产环境怎么管理环境变量
网络·数据库·python
Java Fans1 小时前
用PyQt打造带动画、碰撞检测和键盘控制的小游戏
python·计算机外设·pyqt