目录
- [1. libpytorch下载](#1. libpytorch下载)
- [2. Adaface模型下载](#2. Adaface模型下载)
- [3. 模型转换](#3. 模型转换)
- [4. c++推理](#4. c++推理)
-
- [4.1 前处理](#4.1 前处理)
- [4.2 推理](#4.2 推理)
- [4.3 编译运行](#4.3 编译运行)
-
- [4.3.1 写CMakeLists.txt](#4.3.1 写CMakeLists.txt)
- [4.3.2 编译](#4.3.2 编译)
- [4.3.3 运行](#4.3.3 运行)
1. libpytorch下载
参考:
https://blog.csdn.net/liang_baikai/article/details/127849577
下载完成后,将其解压到/usr/local下
2. Adaface模型下载
https://github.com/mk-minchul/AdaFace?tab=readme-ov-file
WebFace4M模型准确率最高,R50 WebFace4M和R100 WebFace12M的准确率十分接近,但耗时却低了不少,所以建议使用R50 WebFace4M
3. 模型转换
下载Adaface源码,并将下面代码放到其目录下执行即可
model_trans.py
python
import torch
import torch.nn as nn
from head import AdaFace
import net
import onnxruntime as ort
import numpy as np
import onnx
# 加载模型
adaface_models = {
# 'ir_101':"./adaface_ir101_ms1mv2.ckpt",
'ir_50':"./adaface_ir50_webface4m.ckpt",
}
architecture = 'ir_50'
model = net.build_model(architecture)
#model = AdaFace()
statedict = torch.load(adaface_models[architecture],map_location=torch.device('cpu'),weights_only=True)['state_dict']
model_statedict = {key[6:]:val for key, val in statedict.items() if key.startswith('model.')}
model.load_state_dict(model_statedict, strict=True)
for p in model.parameters():
p.requires_grad = False
model.eval()
device = torch.device("cpu");
model_cpu = model.to(device)
# 创建一个示例输入
example_input = torch.rand(1, 3, 112, 112) # 假设输入大小为 (1, 3, 112, 112)
# 转换为 TorchScript
traced_model = torch.jit.trace(model_cpu, example_input)
# 保存模型
traced_model.save('adaface.pt')
# 导出为 ONNX 格式
#onnx_file_path = 'adaface.onnx' # 输出文件名
#torch.onnx.export(model, example_input, onnx_file_path,
# export_params=True)
#opset_version=11, # ONNX 版本
#do_constant_folding=True, # 是否进行常量折叠
#input_names=['input'], # 输入名称
#output_names=['output'], # 输出名称
#dynamic_axes={'input': {0: 'batch_size'}, # 动态 batch size
# 'output': {0: 'batch_size'}})
4. c++推理
4.1 前处理
- resize人脸图片为112x112
- 归一化
- BGR->RGB
- 转换为tensor
- N H W C->N C H W
- reshape 1,3,112,112(模型输入shape)
4.2 推理
- load model
- 读取图片
- 人脸检测对齐
- 前处理
- model.forward推理
cpp
#include <torch/script.h>
#include <iostream>
#include <memory>
#include <opencv2/opencv.hpp>
torch::Tensor to_input(const cv::Mat& pil_rgb_image) {
cv::Mat brg_img;
cv::resize(pil_rgb_image, brg_img, cv::Size(112, 112));
brg_img.convertTo(brg_img, CV_32FC3, 1.0 / 255.0);
brg_img = (brg_img - 0.5) / 0.5;
cv::cvtColor(brg_img, brg_img, cv::COLOR_BGR2RGB);
torch::Tensor tensor = torch::from_blob(brg_img.data, {1, brg_img.rows, brg_img.cols, 3}, torch::kFloat32);
tensor = tensor.permute({0, 3, 1, 2});
tensor = tensor.reshape({1, 3, 112, 112});
tensor = tensor.to(at::kCPU);
return tensor;
}
int main() {
// 模型加载
torch::jit::script::Module model;
try {
model = torch::jit::load("./adaface.pt");
//model.eval();
model.to(at::kCPU);
} catch (const c10::Error& e) {
std::cerr << "Error loading the model\n";
return -1;
}
// 读取图片
std::vector<std::string> images;
getAllFiles("./images", images, {"jpg", "jpeg", "png"});
// 人脸检测器初始化
OpenCVFace open_cv_face;
open_cv_face.Init("./models/face_detection_yunet_2023mar.onnx",
"./models/face_recognition_sface_2021dec.onnx", 0.9, 0.5);
for (const auto &image_path : images)
{
// Load an image using OpenCV
cv::Mat orig_img = cv::imread(image_path);
if (orig_img.empty()) {
std::cerr << "Could not read the image\n";
return -1;
}
auto detect_start = GetCurTimestamp();
std::vector<cv::Mat> aligned_faces;
// 人脸检测对齐
open_cv_face.detectAndAlign(orig_img, aligned_faces);
//std::cout<<"detect use time is "<< (GetCurTimestamp() - detect_start)<<std::endl;
for (const auto &face:aligned_faces)
{
cv::Mat img(face);
auto img_tensor = to_input(img);
// Inference 推理
std::vector<torch::jit::IValue> inputs;
inputs.push_back(img_tensor);
auto output = model.forward(inputs);
// Check if the output is a tuple
if (output.isTuple()) {
auto output_tuple = output.toTuple();
if (output_tuple->elements().size() > 0) {
at::Tensor output_tensor = output_tuple->elements()[0].toTensor();
//std::cout << output_tensor << std::endl;
} else {
std::cerr << "Output tuple is empty\n";
return -1;
}
} else {
at::Tensor output_tensor = output.toTensor();
//std::cout << output_tensor << std::endl;
}
}
}
return 0;
}
注意:本代码的人脸检测和对齐使用opencv的Yunet和SFace实现, 地址
4.3 编译运行
4.3.1 写CMakeLists.txt
本工程依赖opencv和libtorch,一并下载解压到/usr/local下即可。
bash
cmake_minimum_required(VERSION 3.22.1)
project(adaface-demo)
set(QMAKE_CXXFLAGS "-std=c++17")
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
include_directories(/usr/local/include)
link_directories(/usr/local/lib)
set(OPENCV_VERSION "4.9.0")
set(OPENCV_INSTALLATION_PATH "/usr/local/opencv4" CACHE PATH "Where to look for OpenCV installation")
# Find OpenCV
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
if (AARCH64)
set(Torch_DIR /usr/local/libtorch/lib/python3.10/site-packages/torch/share/cmake/Torch)
else ()
set(Torch_DIR /usr/local/libtorch/share/cmake/Torch)
endif ()
find_package(Torch REQUIRED)
include_directories(${TORCH_INCLUDE_DIRS})
AUX_SOURCE_DIRECTORY(./src DIR_SRCS)
add_executable(adaface-demo ${DIR_SRCS})
target_link_libraries(adaface-demo ${OpenCV_LIBS} ${TORCH_LIBRARIES})
4.3.2 编译
bash
mkdir build
cd build
cmake ..
4.3.3 运行
将模型文件adaface.py拷贝到bin目录下
bash
cd ../bin
./main