分布式 & 漏桶算法 & 总结

前言


相关系列

概述


简介

LBA @ Leaky Bucket Algorithm @ 漏桶算法是一种流行于网络通信领域的流量控制/频率限制算法。漏桶算法的核心原理是通过一个概念上的"漏桶"来控制请求的访问频率,这个漏桶会在指定的容量范围内接收&保存所有的请求,并以指定的频率将请求渗出以允许其正式访问系统,从而达到持续控制请求访问数量&频率的效果。

场景

  • ++限制网络带宽:控制访问流量;++
  • ++限制API频率:限制API调用频率;++
  • ++功能分级:为不同级别的用户提供不同频率的服务;++
  • ++任务调度:限制任务执行频率以避免资源争用。++

原理


概念

  • ++漏桶:用于存放请求的概念容器,通常使用Redis一类的中间件配合队列结构实现;++
  • ++漏桶容量:漏桶所能保存的最大请求数量,一般是系统平均QPS * 最大延迟时间;++
  • ++请求泄漏/渗出频率:漏桶向系统发送请求的频率,通常是系统的平均QPS。++

流程

  • ++客户端访问系统,在网关被拦截。随后网关会判断当前请求是否免限流,是则直接访问;++
  • ++如果当前请求限流,则网关会继续判断漏桶是否已满,是则直接拒绝请求;否则将请求置于漏桶中等待;++
  • ++网关会以指定频率从漏桶中取出请求以允许按预期目的访问系统。++

缺点

  • ++漏桶算法不太合适处理同步/即时请求,因为请求在被置于漏桶中处理时需要连同线程一同保存/等待,这可能会耗尽系统线程池的资源,并且请求在漏桶中的等待时间也可能难以评估,因此漏桶算法其实更适用于处理异步请求;++
  • ++漏桶算法难以/无法处理流量高发/突发的情况,因为其泄露/渗出请求的频率是始终不变的。++
相关推荐
沉着的码农1 小时前
【设计模式】基于责任链模式的参数校验
java·spring boot·分布式
ZHOU_WUYI13 小时前
一个简单的分布式追踪系统
分布式
码不停蹄的玄黓17 小时前
MySQL分布式ID冲突详解:场景、原因与解决方案
数据库·分布式·mysql·id冲突
王小王-12317 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
要开心吖ZSH19 小时前
《Spring 中上下文传递的那些事儿》Part 4:分布式链路追踪 —— Sleuth + Zipkin 实践
java·分布式·spring
幼稚园的山代王20 小时前
RabbitMQ 4.1.1初体验
分布式·rabbitmq·ruby
百锦再20 小时前
RabbitMQ用法的6种核心模式全面解析
分布式·rabbitmq·路由·消息·通道·交换机·代理
一路向北North20 小时前
RabbitMQ简单消息监听和确认
分布式·rabbitmq·ruby
一路向北North1 天前
使用reactor-rabbitmq库监听Rabbitmq
分布式·rabbitmq·ruby
Amy187021118231 天前
赋能低压分布式光伏“四可”建设,筑牢电网安全新防线
分布式