分布式 & 漏桶算法 & 总结

前言


相关系列

概述


简介

LBA @ Leaky Bucket Algorithm @ 漏桶算法是一种流行于网络通信领域的流量控制/频率限制算法。漏桶算法的核心原理是通过一个概念上的"漏桶"来控制请求的访问频率,这个漏桶会在指定的容量范围内接收&保存所有的请求,并以指定的频率将请求渗出以允许其正式访问系统,从而达到持续控制请求访问数量&频率的效果。

场景

  • ++限制网络带宽:控制访问流量;++
  • ++限制API频率:限制API调用频率;++
  • ++功能分级:为不同级别的用户提供不同频率的服务;++
  • ++任务调度:限制任务执行频率以避免资源争用。++

原理


概念

  • ++漏桶:用于存放请求的概念容器,通常使用Redis一类的中间件配合队列结构实现;++
  • ++漏桶容量:漏桶所能保存的最大请求数量,一般是系统平均QPS * 最大延迟时间;++
  • ++请求泄漏/渗出频率:漏桶向系统发送请求的频率,通常是系统的平均QPS。++

流程

  • ++客户端访问系统,在网关被拦截。随后网关会判断当前请求是否免限流,是则直接访问;++
  • ++如果当前请求限流,则网关会继续判断漏桶是否已满,是则直接拒绝请求;否则将请求置于漏桶中等待;++
  • ++网关会以指定频率从漏桶中取出请求以允许按预期目的访问系统。++

缺点

  • ++漏桶算法不太合适处理同步/即时请求,因为请求在被置于漏桶中处理时需要连同线程一同保存/等待,这可能会耗尽系统线程池的资源,并且请求在漏桶中的等待时间也可能难以评估,因此漏桶算法其实更适用于处理异步请求;++
  • ++漏桶算法难以/无法处理流量高发/突发的情况,因为其泄露/渗出请求的频率是始终不变的。++
相关推荐
星星点点洲15 分钟前
【RabbitMQ】消息丢失问题排查与解决
分布式·rabbitmq
小白学大数据2 小时前
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
javascript·redis·分布式·scrapy
Kookoos2 小时前
Redis + ABP vNext 构建分布式高可用缓存架构
redis·分布式·缓存·架构·c#·.net
漂流瓶6666663 小时前
运行Spark程序-在shell中运行 --SparkConf 和 SparkContext
大数据·分布式·spark
lqlj22334 小时前
RDD案例数据清洗
大数据·分布式·spark
心仪悦悦5 小时前
RDD的自定义分区器
大数据·分布式·spark
.生产的驴8 小时前
Vue3 加快页面加载速度 使用CDN外部库的加载 提升页面打开速度 服务器分发
运维·服务器·前端·vue.js·分布式·前端框架·vue
@小了白了兔15 小时前
RabbitMQ工作流程及使用方法
分布式·rabbitmq
dddaidai12316 小时前
分布式ID和分布式锁
redis·分布式·mysql·zookeeper·etcd
weixin_4082663416 小时前
深度学习-分布式训练机制
人工智能·分布式·深度学习