分布式 & 漏桶算法 & 总结

前言


相关系列

概述


简介

LBA @ Leaky Bucket Algorithm @ 漏桶算法是一种流行于网络通信领域的流量控制/频率限制算法。漏桶算法的核心原理是通过一个概念上的"漏桶"来控制请求的访问频率,这个漏桶会在指定的容量范围内接收&保存所有的请求,并以指定的频率将请求渗出以允许其正式访问系统,从而达到持续控制请求访问数量&频率的效果。

场景

  • ++限制网络带宽:控制访问流量;++
  • ++限制API频率:限制API调用频率;++
  • ++功能分级:为不同级别的用户提供不同频率的服务;++
  • ++任务调度:限制任务执行频率以避免资源争用。++

原理


概念

  • ++漏桶:用于存放请求的概念容器,通常使用Redis一类的中间件配合队列结构实现;++
  • ++漏桶容量:漏桶所能保存的最大请求数量,一般是系统平均QPS * 最大延迟时间;++
  • ++请求泄漏/渗出频率:漏桶向系统发送请求的频率,通常是系统的平均QPS。++

流程

  • ++客户端访问系统,在网关被拦截。随后网关会判断当前请求是否免限流,是则直接访问;++
  • ++如果当前请求限流,则网关会继续判断漏桶是否已满,是则直接拒绝请求;否则将请求置于漏桶中等待;++
  • ++网关会以指定频率从漏桶中取出请求以允许按预期目的访问系统。++

缺点

  • ++漏桶算法不太合适处理同步/即时请求,因为请求在被置于漏桶中处理时需要连同线程一同保存/等待,这可能会耗尽系统线程池的资源,并且请求在漏桶中的等待时间也可能难以评估,因此漏桶算法其实更适用于处理异步请求;++
  • ++漏桶算法难以/无法处理流量高发/突发的情况,因为其泄露/渗出请求的频率是始终不变的。++
相关推荐
^辞安5 小时前
RocketMQ为什么自研Nameserver而不用zookeeper?
分布式·zookeeper·rocketmq
在未来等你7 小时前
Kafka面试精讲 Day 8:日志清理与数据保留策略
大数据·分布式·面试·kafka·消息队列
poemyang8 小时前
“你还活着吗?” “我没死,只是网卡了!”——来自分布式世界的“生死契约”
分布式
echoyu.9 小时前
消息队列-初识kafka
java·分布式·后端·spring cloud·中间件·架构·kafka
明达智控技术9 小时前
MR30分布式I/O在面机装备中的应用
分布式·物联网·自动化
JAVA学习通12 小时前
【RabbitMQ】---RabbitMQ 工作流程和 web 界面介绍
分布式·rabbitmq
安卓开发者13 小时前
鸿蒙NEXT应用数据持久化全面解析:从用户首选项到分布式数据库
数据库·分布式·harmonyos
JAVA学习通15 小时前
【RabbitMQ】如何在 Ubuntu 安装 RabbitMQ
分布式·rabbitmq
Lansonli16 小时前
大数据Spark(六十三):RDD-Resilient Distributed Dataset
大数据·分布式·spark
BYSJMG16 小时前
计算机毕业设计选题:基于Spark+Hadoop的健康饮食营养数据分析系统【源码+文档+调试】
大数据·vue.js·hadoop·分布式·spark·django·课程设计