分布式 & 漏桶算法 & 总结

前言


相关系列

概述


简介

LBA @ Leaky Bucket Algorithm @ 漏桶算法是一种流行于网络通信领域的流量控制/频率限制算法。漏桶算法的核心原理是通过一个概念上的"漏桶"来控制请求的访问频率,这个漏桶会在指定的容量范围内接收&保存所有的请求,并以指定的频率将请求渗出以允许其正式访问系统,从而达到持续控制请求访问数量&频率的效果。

场景

  • ++限制网络带宽:控制访问流量;++
  • ++限制API频率:限制API调用频率;++
  • ++功能分级:为不同级别的用户提供不同频率的服务;++
  • ++任务调度:限制任务执行频率以避免资源争用。++

原理


概念

  • ++漏桶:用于存放请求的概念容器,通常使用Redis一类的中间件配合队列结构实现;++
  • ++漏桶容量:漏桶所能保存的最大请求数量,一般是系统平均QPS * 最大延迟时间;++
  • ++请求泄漏/渗出频率:漏桶向系统发送请求的频率,通常是系统的平均QPS。++

流程

  • ++客户端访问系统,在网关被拦截。随后网关会判断当前请求是否免限流,是则直接访问;++
  • ++如果当前请求限流,则网关会继续判断漏桶是否已满,是则直接拒绝请求;否则将请求置于漏桶中等待;++
  • ++网关会以指定频率从漏桶中取出请求以允许按预期目的访问系统。++

缺点

  • ++漏桶算法不太合适处理同步/即时请求,因为请求在被置于漏桶中处理时需要连同线程一同保存/等待,这可能会耗尽系统线程池的资源,并且请求在漏桶中的等待时间也可能难以评估,因此漏桶算法其实更适用于处理异步请求;++
  • ++漏桶算法难以/无法处理流量高发/突发的情况,因为其泄露/渗出请求的频率是始终不变的。++
相关推荐
爱吃泡芙的小白白22 分钟前
爬虫学习——使用HTTP服务代理、redis使用、通过Scrapy实现分布式爬取
redis·分布式·爬虫·http代理·学习记录
躺不平的理查德7 小时前
General Spark Operations(Spark 基础操作)
大数据·分布式·spark
talle20217 小时前
Zeppelin在spark环境导出dataframe
大数据·分布式·spark
渣渣盟7 小时前
大数据开发环境的安装,配置(Hadoop)
大数据·hadoop·分布式
Angindem8 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务
龙仔72516 小时前
离线安装rabbitmq全流程
分布式·rabbitmq·ruby
〆、风神19 小时前
Spring Boot 整合 Lock4j + Redisson 实现分布式锁实战
spring boot·分布式·后端
胡萝卜糊了Ohh20 小时前
kafka
分布式·kafka
桑榆08061 天前
Spark-Streaming核心编程
大数据·分布式·spark