【通义实验室】开源【文本生成图片】大模型

文本生成图片效果

文本为一首古诗:孤帆远影碧空尽,唯见长江天际流。 不同风格生成的图片

模型地址

中文StableDiffusion-通用领域

初始化pipeline

python 复制代码
task = Tasks.text_to_image_synthesis
model_id = 'damo/multi-modal_chinese_stable_diffusion_v1.0'
pipe = pipeline(task=task, model=model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)

生成图片

python 复制代码
# 反向提示词
negative_prompt = (
        "blood, gore, violence, murder, kill, dead, corpse, "
        "horrible, frightening, scary, monster, ghost, skeleton, zombie, "
        "sex, nudity, pornography, adult, erotic, mature, "
        "drugs, alcohol, smoking, tobacco, illegal, "
        "dark, night, storm, thunder, lightning, apocalypse, disaster, "
        "gun, knife, sword, bomb, explosion, firearm, "
        "mean, angry, sadistic, hostile, aggressive, bullying, "
        "dangerous, unsafe, hazardous, poison, toxic, pollution"
    )
output = pipe(
        {
            'text': '孤帆远影碧空尽,唯见长江天际流。中国画',
            'num_inference_steps': 120,
            'guidance_scale': 11,
            'negative_prompt': negative_prompt
        }
    )
cv2.imwrite('result1.png', output['output_imgs'][0])
# 输出为opencv numpy格式,转为PIL.Image
img = output['output_imgs'][0]
img = Image.fromarray(img[:,:,::-1])
img.save('result1.png')

封装为http接口的完整代码

python 复制代码
from flask import Flask, request, send_file
import io
import torch
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from PIL import Image

app = Flask(__name__)

# 初始化pipeline
task = Tasks.text_to_image_synthesis
model_id = 'damo/multi-modal_chinese_stable_diffusion_v1.0'
pipe = pipeline(task=task, model=model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)

@app.route('/generate', methods=['POST'])
def generate_image():
    data = request.json
    text = data.get('text', '')
    guidance_scale = data.get('guidance_scale', 9)

    if not text:
        return {'error': 'No text provided'}, 400

    negative_prompt = (
        "blood, gore, violence, murder, kill, dead, corpse, "
        "horrible, frightening, scary, monster, ghost, skeleton, zombie, "
        "sex, nudity, pornography, adult, erotic, mature, "
        "drugs, alcohol, smoking, tobacco, illegal, "
        "dark, night, storm, thunder, lightning, apocalypse, disaster, "
        "gun, knife, sword, bomb, explosion, firearm, "
        "mean, angry, sadistic, hostile, aggressive, bullying, "
        "dangerous, unsafe, hazardous, poison, toxic, pollution"
    )

    output = pipe(
        {
            'text': text,
            'num_inference_steps': 120,
            'guidance_scale': guidance_scale,
            'negative_prompt': negative_prompt
        }
    )

    img = output['output_imgs'][0]
    img = Image.fromarray(img[:, :, ::-1])  # Convert BGR to RGB

    # Save image to bytes
    img_byte_arr = io.BytesIO()
    img.save(img_byte_arr, format='PNG')
    img_byte_arr.seek(0)

    return send_file(img_byte_arr, mimetype='image/png')


if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=5000)

在python环境下运行代码

第一次运行会下载大模型文件,需要等待一段时间 启动成功会有如下提示

csharp 复制代码
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:5000
 * Running on http://10.10.10.132:5000

使用postman测试

源码下载地址

相关推荐
koo3649 小时前
pytorch环境配置
人工智能·pytorch·python
程序员杰哥12 小时前
Python自动化测试之线上流量回放:录制、打标、压测与平台选择
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试
吴佳浩12 小时前
LangChain v1 重大更新讲解⚠⚠⚠
python·langchain·agent
模型启动机13 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型
k***19513 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG14 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q78414 小时前
深度学习技术
人工智能·深度学习
KKKlucifer14 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全14 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖14 小时前
这个Q3,百度开始AI
人工智能·百度