【通义实验室】开源【文本生成图片】大模型

文本生成图片效果

文本为一首古诗:孤帆远影碧空尽,唯见长江天际流。 不同风格生成的图片

模型地址

中文StableDiffusion-通用领域

初始化pipeline

python 复制代码
task = Tasks.text_to_image_synthesis
model_id = 'damo/multi-modal_chinese_stable_diffusion_v1.0'
pipe = pipeline(task=task, model=model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)

生成图片

python 复制代码
# 反向提示词
negative_prompt = (
        "blood, gore, violence, murder, kill, dead, corpse, "
        "horrible, frightening, scary, monster, ghost, skeleton, zombie, "
        "sex, nudity, pornography, adult, erotic, mature, "
        "drugs, alcohol, smoking, tobacco, illegal, "
        "dark, night, storm, thunder, lightning, apocalypse, disaster, "
        "gun, knife, sword, bomb, explosion, firearm, "
        "mean, angry, sadistic, hostile, aggressive, bullying, "
        "dangerous, unsafe, hazardous, poison, toxic, pollution"
    )
output = pipe(
        {
            'text': '孤帆远影碧空尽,唯见长江天际流。中国画',
            'num_inference_steps': 120,
            'guidance_scale': 11,
            'negative_prompt': negative_prompt
        }
    )
cv2.imwrite('result1.png', output['output_imgs'][0])
# 输出为opencv numpy格式,转为PIL.Image
img = output['output_imgs'][0]
img = Image.fromarray(img[:,:,::-1])
img.save('result1.png')

封装为http接口的完整代码

python 复制代码
from flask import Flask, request, send_file
import io
import torch
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from PIL import Image

app = Flask(__name__)

# 初始化pipeline
task = Tasks.text_to_image_synthesis
model_id = 'damo/multi-modal_chinese_stable_diffusion_v1.0'
pipe = pipeline(task=task, model=model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)

@app.route('/generate', methods=['POST'])
def generate_image():
    data = request.json
    text = data.get('text', '')
    guidance_scale = data.get('guidance_scale', 9)

    if not text:
        return {'error': 'No text provided'}, 400

    negative_prompt = (
        "blood, gore, violence, murder, kill, dead, corpse, "
        "horrible, frightening, scary, monster, ghost, skeleton, zombie, "
        "sex, nudity, pornography, adult, erotic, mature, "
        "drugs, alcohol, smoking, tobacco, illegal, "
        "dark, night, storm, thunder, lightning, apocalypse, disaster, "
        "gun, knife, sword, bomb, explosion, firearm, "
        "mean, angry, sadistic, hostile, aggressive, bullying, "
        "dangerous, unsafe, hazardous, poison, toxic, pollution"
    )

    output = pipe(
        {
            'text': text,
            'num_inference_steps': 120,
            'guidance_scale': guidance_scale,
            'negative_prompt': negative_prompt
        }
    )

    img = output['output_imgs'][0]
    img = Image.fromarray(img[:, :, ::-1])  # Convert BGR to RGB

    # Save image to bytes
    img_byte_arr = io.BytesIO()
    img.save(img_byte_arr, format='PNG')
    img_byte_arr.seek(0)

    return send_file(img_byte_arr, mimetype='image/png')


if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=5000)

在python环境下运行代码

第一次运行会下载大模型文件,需要等待一段时间 启动成功会有如下提示

csharp 复制代码
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:5000
 * Running on http://10.10.10.132:5000

使用postman测试

源码下载地址

相关推荐
心无旁骛~19 分钟前
python多进程和多线程问题
开发语言·python
铅笔侠_小龙虾19 分钟前
深度学习理论推导--梯度下降法
人工智能·深度学习
星云数灵20 分钟前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
kaikaile199528 分钟前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd12339 分钟前
第1章_LangGraph的背景与设计哲学
人工智能
计算机毕设匠心工作室43 分钟前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python
计算机毕设小月哥1 小时前
【Hadoop+Spark+python毕设】智能制造生产效能分析与可视化系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql
Aevget1 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪1 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus1 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu