【通义实验室】开源【文本生成图片】大模型

文本生成图片效果

文本为一首古诗:孤帆远影碧空尽,唯见长江天际流。 不同风格生成的图片

模型地址

中文StableDiffusion-通用领域

初始化pipeline

python 复制代码
task = Tasks.text_to_image_synthesis
model_id = 'damo/multi-modal_chinese_stable_diffusion_v1.0'
pipe = pipeline(task=task, model=model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)

生成图片

python 复制代码
# 反向提示词
negative_prompt = (
        "blood, gore, violence, murder, kill, dead, corpse, "
        "horrible, frightening, scary, monster, ghost, skeleton, zombie, "
        "sex, nudity, pornography, adult, erotic, mature, "
        "drugs, alcohol, smoking, tobacco, illegal, "
        "dark, night, storm, thunder, lightning, apocalypse, disaster, "
        "gun, knife, sword, bomb, explosion, firearm, "
        "mean, angry, sadistic, hostile, aggressive, bullying, "
        "dangerous, unsafe, hazardous, poison, toxic, pollution"
    )
output = pipe(
        {
            'text': '孤帆远影碧空尽,唯见长江天际流。中国画',
            'num_inference_steps': 120,
            'guidance_scale': 11,
            'negative_prompt': negative_prompt
        }
    )
cv2.imwrite('result1.png', output['output_imgs'][0])
# 输出为opencv numpy格式,转为PIL.Image
img = output['output_imgs'][0]
img = Image.fromarray(img[:,:,::-1])
img.save('result1.png')

封装为http接口的完整代码

python 复制代码
from flask import Flask, request, send_file
import io
import torch
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from PIL import Image

app = Flask(__name__)

# 初始化pipeline
task = Tasks.text_to_image_synthesis
model_id = 'damo/multi-modal_chinese_stable_diffusion_v1.0'
pipe = pipeline(task=task, model=model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)

@app.route('/generate', methods=['POST'])
def generate_image():
    data = request.json
    text = data.get('text', '')
    guidance_scale = data.get('guidance_scale', 9)

    if not text:
        return {'error': 'No text provided'}, 400

    negative_prompt = (
        "blood, gore, violence, murder, kill, dead, corpse, "
        "horrible, frightening, scary, monster, ghost, skeleton, zombie, "
        "sex, nudity, pornography, adult, erotic, mature, "
        "drugs, alcohol, smoking, tobacco, illegal, "
        "dark, night, storm, thunder, lightning, apocalypse, disaster, "
        "gun, knife, sword, bomb, explosion, firearm, "
        "mean, angry, sadistic, hostile, aggressive, bullying, "
        "dangerous, unsafe, hazardous, poison, toxic, pollution"
    )

    output = pipe(
        {
            'text': text,
            'num_inference_steps': 120,
            'guidance_scale': guidance_scale,
            'negative_prompt': negative_prompt
        }
    )

    img = output['output_imgs'][0]
    img = Image.fromarray(img[:, :, ::-1])  # Convert BGR to RGB

    # Save image to bytes
    img_byte_arr = io.BytesIO()
    img.save(img_byte_arr, format='PNG')
    img_byte_arr.seek(0)

    return send_file(img_byte_arr, mimetype='image/png')


if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=5000)

在python环境下运行代码

第一次运行会下载大模型文件,需要等待一段时间 启动成功会有如下提示

csharp 复制代码
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:5000
 * Running on http://10.10.10.132:5000

使用postman测试

源码下载地址

相关推荐
心疼你的一切2 分钟前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒6 分钟前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站8 分钟前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵12 分钟前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰13 分钟前
[python]-AI大模型
开发语言·人工智能·python
陈天伟教授13 分钟前
人工智能应用- 语言理解:04.大语言模型
人工智能·语言模型·自然语言处理
Luhui Dev13 分钟前
AI 与数学的融合:技术路径、应用前沿与未来展望(2026 版)
人工智能
Yvonne爱编码23 分钟前
JAVA数据结构 DAY6-栈和队列
java·开发语言·数据结构·python
chian-ocean24 分钟前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
那个村的李富贵24 分钟前
从CANN到Canvas:AI绘画加速实战与源码解析
人工智能·ai作画·cann