Fine Tuning——Prompt-Learning && Delta Tuning

预训练大模型只能提供较好的初始化,面对纷繁复杂的NLP任务场景,需要进一步的微调训练。

T5
  • 110亿参数
  • 从训练"分类层"转为 训练 "encoder-decoder"
  • sequence to sequence 序列到序列的训练,输出token而不是分类
  • demonstration 例证
GPT3
  • 1750亿参数

    模型太大,单机根本无法微调

  • 没有任何参数被微调,通过prompt方式使用

  • Descriptions(Prompts) + Few-shot examples to generate tokens

    in-context leaning :大模型见过几个examples再输出

  • 优点

    更好的语言理解和语言生成效果

    更大的容积去学习新的知识

Fine tuning 的改变

以前的方法微调要改变全部模型的参数,在GPT3上是不现实的,在110b其实就很难了

每个任务对应一个100多亿的模型,100个任务就有100个模型,从存储角度来讲也不现实

高效的微调大模型 Effective Model Adaptation

从task 和 data的角度出发

prompt-learning

给模型加入一些额外的上下文 trigger出一些token

让输入数据变得更具体

从优化的角度出发

delta Tuning

用小参数去驱动大参数

相关推荐
音视频牛哥1 小时前
打通视频到AI的第一公里:轻量RTSP服务如何重塑边缘感知入口?
人工智能·计算机视觉·音视频·大牛直播sdk·机器视觉·轻量级rtsp服务·ai人工智能
Wendy14412 小时前
【灰度实验】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
中杯可乐多加冰2 小时前
五大低代码平台横向深度测评:smardaten 2.0领衔AI原型设计
人工智能
无线图像传输研究探索3 小时前
单兵图传终端:移动场景中的 “实时感知神经”
网络·人工智能·5g·无线图传·5g单兵图传
zzywxc7874 小时前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
铭keny4 小时前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测
墨尘游子4 小时前
11-大语言模型—Transformer 盖楼,BERT 装修,RoBERTa 直接 “拎包入住”|预训练白话指南
人工智能·语言模型·自然语言处理
金井PRATHAMA4 小时前
主要分布于内侧内嗅皮层的层Ⅲ的网格-速度联合细胞(Grid × Speed Conjunctive Cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·知识图谱
天道哥哥5 小时前
InsightFace(RetinaFace + ArcFace)人脸识别项目(预训练模型,鲁棒性很好)
人工智能·目标检测
幻风_huanfeng5 小时前
学习人工智能所需知识体系及路径详解
人工智能·学习