Fine Tuning——Prompt-Learning && Delta Tuning

预训练大模型只能提供较好的初始化,面对纷繁复杂的NLP任务场景,需要进一步的微调训练。

T5
  • 110亿参数
  • 从训练"分类层"转为 训练 "encoder-decoder"
  • sequence to sequence 序列到序列的训练,输出token而不是分类
  • demonstration 例证
GPT3
  • 1750亿参数

    模型太大,单机根本无法微调

  • 没有任何参数被微调,通过prompt方式使用

  • Descriptions(Prompts) + Few-shot examples to generate tokens

    in-context leaning :大模型见过几个examples再输出

  • 优点

    更好的语言理解和语言生成效果

    更大的容积去学习新的知识

Fine tuning 的改变

以前的方法微调要改变全部模型的参数,在GPT3上是不现实的,在110b其实就很难了

每个任务对应一个100多亿的模型,100个任务就有100个模型,从存储角度来讲也不现实

高效的微调大模型 Effective Model Adaptation

从task 和 data的角度出发

prompt-learning

给模型加入一些额外的上下文 trigger出一些token

让输入数据变得更具体

从优化的角度出发

delta Tuning

用小参数去驱动大参数

相关推荐
新缸中之脑2 分钟前
用RedisVL构建长期记忆
人工智能
J_Xiong01179 分钟前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper15 分钟前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd16 分钟前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
CoderJia程序员甲26 分钟前
GitHub 热榜项目 - 日榜(2026-02-06)
人工智能·ai·大模型·github·ai教程
wukangjupingbb30 分钟前
AI多模态技术在创新药研发中的结合路径、机制及挑战
人工智能
CoderIsArt41 分钟前
三大主流智能体框架解析
人工智能
民乐团扒谱机1 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Coder_Boy_1 小时前
Deeplearning4j+ Spring Boot 电商用户复购预测案例中相关概念
java·人工智能·spring boot·后端·spring
芷栀夏1 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann