理解vllm分布式推理服务中的多节点Multi-Node部署方式

1. 多节点的含义

vllm官方文档(参考1)中给出了多节点"Multi-Node"多GPU部署的方案说明,注意该特性只是较新版本的vllm中才能使用。"Multi-Node"指的是,将大模型的推理和服务过程,分布在多个计算节点(服务器)上,进行推理的能力。这种分布式处理方式,能提升大模型在处理大量请求时的吞吐量、降低单个节点的负载,实现资源的有效利用。

一般来说,Multi-Node主要用于这种场景:k8s集群中,一个node的GPU资源不足以加载一个很大的模型,所以可以利用多个node的资源共同来加载模型

2. 单服务器部署多节点

vllm的参数--pipeline-parallel-size就是用来控制节点数的。如果将这个值设置为2,则最终就有2个模型同时做并发处理。官方文档(参考1)还举了个例子,如果服务器上有16个GPU,一个大模型需要8个GPU才能部署,则可以将--tensor-parallel-size参数的值设置为8,将--pipeline-parallel-size的值设置为2,这样就有2个模型同时做并发处理。

笔者有8块A800,我想部署8个Qwen2-7B模型做并发处理(一个模型只需要一块A800就能实现推理),则配置如下

复制代码
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m vllm.entrypoints.openai.api_server 
--model /data/models/Qwen2-7B-Instruct/ 
--served-model-name aaa 
--trust-remote-code 
--tensor-parallel-size 1 
--pipeline-parallel-size 8 
--port 8000

经笔者实测,这样确实能将8个节点部署到一台服务器上,暴露的API接口也是统一的,也能让多模型支持并发。但实测发现,这样的部署方式,并不能带来提高并发的收益。

可见,单服务器部署多节点,每个节点只负责模型的一部分计算,而多个节点之间的协同工作是比较耗时的。这种单服务器多GPU卡的情况下,不如使用Single-Node Multi-GPU (tensor parallel inference)(参考1)能带来更大的并发处理收益。

注意:在上面这种场景下,笔者实测表面,多节点部署方式带来的收益,不如单节点单GPU的效果好。本文并非要推进使用多节点的部署方式,只是对这种方式展开讨论。

3. 参考

  1. vllm分布式服务。https://docs.vllm.ai/en/latest/serving/distributed_serving.html
  2. vllm默认参数值。https://docs.vllm.ai/en/v0.4.2/models/engine_args.html
  3. Mistral-Large-Instruct-2407部署。https://blog.csdn.net//article/details/140691972
相关推荐
兜兜风d'2 小时前
RabbitMQ事务机制详解
数据库·spring boot·分布式·rabbitmq·ruby·java-rabbitmq
ifeng09182 小时前
HarmonyOS分布式任务调度——跨设备智能任务分配与迁移
分布式·华为·harmonyos
9ilk2 小时前
【仿RabbitMQ的发布订阅式消息队列】--- 模块设计与划分
c++·笔记·分布式·后端·中间件·rabbitmq
linweidong5 小时前
多级缓存系统设计:从本地到分布式,打造高性能利器
分布式·缓存·消息队列·雪崩·java面经·击穿·消费端
西***63475 小时前
怕故障?怕扩展难?分布式可视化控制:给足场景安全感
分布式·数据可视化
qq_5470261795 小时前
分布式Session会话实现方案
分布式
抛物线.5 小时前
Nerve:分布式基础设施智能管理平台的设计与实现
分布式
YC运维6 小时前
Kafka 全方位技术文档
分布式·kafka
harmful_sheep6 小时前
Kafka的概念
分布式·kafka
晨陌y7 小时前
从 0 到 1 开发 Rust 分布式日志服务:高吞吐设计 + 存储优化,支撑千万级日志采集
开发语言·分布式·rust