OpenCV相机标定与3D重建(15)计算给定图像点对应的极线(epipolar lines)函数computeCorrespondEpilines()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算给定图像点对应的极线(epipolar lines)。

对于立体图像对中一个图像的点,计算这些点在另一个图像中对应的极线。

cv::computeCorrespondEpilines 是 OpenCV 库中的一个函数,用于计算给定图像点对应的极线(epipolar lines)。这个函数在立体视觉和多视图几何中非常重要,因为它帮助确定一个点在一个图像中的对应点在另一个图像中的可能位置。这有助于减少匹配问题的搜索空间。

函数原型

cpp 复制代码
void cv::computeCorrespondEpilines
(
	InputArray 	points,
	int 	whichImage,
	InputArray 	F,
	OutputArray 	lines 
)		

参数

  • 参数points:输入点。类型为 CV_32FC2 的 N×1 或 1×N 矩阵,或 vector 类型的向量。
  • 参数whichImage:包含这些点的图像索引(1 或 2)。
  • 参数F:基础矩阵,可以通过 findFundamentalMat 或 stereoRectify 函数估计得到。
  • 参数lines:输出的极线向量,对应于另一图像中的点。每条极线 ax+by+c=0 由三个数 (a, b, c) 编码。
    对于立体图像对中的一个图像中的每一个点,该函数计算其在另一个图像中对应的极线方程。

根据基础矩阵的定义(参见 findFundamentalMat),对于第一个图像中的点 l i ( 2 ) l^{(2)}_i li(2)(当 whichImage=1 时),第二个图像中的极 p i ( 1 ) p^{(1)}_i pi(1)计算为:

l i ( 2 ) = F p i ( 1 ) l^{(2)}_i = F p^{(1)}_i li(2)=Fpi(1)

反之,当 whichImage=2 时,从第二个图像中的点 l i ( 1 ) l^{(1)}_i li(1)计算第一个图像中的极线 p i ( 2 ) p^{(2)}_i pi(2)为:
l i ( 1 ) = F T p i ( 2 ) l^{(1)}_i = F^T p^{(2)}_i li(1)=FTpi(2)

极线系数定义到一个比例因子。它们被归一化以满足 a i 2 + b i 2 = 1 a_i^2+b_i^2=1 ai2+bi2=1

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

int main()
{
    // 假设有一些特征点从第一张图像中提取出来
    vector< Point2f > points1 = { Point2f( 100, 150 ), Point2f( 200, 250 ) };

    // 假设我们已经计算得到了基础矩阵 F
    Mat F = ( Mat_< double >( 3, 3 ) << 1, 0, 0, 0, 1, 0, 0, 0, 1 );  // 这里只是示例,实际的基础矩阵需要通过其他方法计算得到

    // 计算这些点在第二张图像中的对应极线
    vector< Vec3f > lines2;
    computeCorrespondEpilines( points1, 1, F, lines2 );

    // 打印结果
    for ( size_t i = 0; i < lines2.size(); ++i )
    {
        cout << "Line corresponding to point (" << points1[ i ].x << ", " << points1[ i ].y << ") is: " << lines2[ i ] << endl;
    }

    return 0;
}

运行结果

bash 复制代码
Line corresponding to point (100, 150) is: [0.5547, 0.83205, 0.005547]
Line corresponding to point (200, 250) is: [0.624695, 0.780869, 0.00312348]
相关推荐
帮帮志2 小时前
05.unity 游戏开发-3D工程的创建及使用方式和区别
3d·unity·游戏引擎
新知图书2 小时前
OpenCV销毁窗口
人工智能·opencv·计算机视觉
乙酸氧铍6 小时前
OpenCV 实现对形似宝马标的黄黑四象限标定位
人工智能·python·opencv·计算机视觉·光学定位·光学识别·四象限标
jndingxin6 小时前
OpenCV 图形API(13)用于执行两个矩阵(或图像)逐元素乘法操作的函数mul()
人工智能·opencv
在下胡三汉9 小时前
gltf unity-Unity中Gltf模型的使用与优化技巧
3d
前端极客探险家13 小时前
如何用 Three.js 和 Vue 3 实现 3D 商品展示
javascript·vue.js·3d
新知图书13 小时前
OpenCV界面编程
人工智能·opencv·计算机视觉
余人于RenYu14 小时前
3D 地图渲染-区域纹理图添加
3d·高德地图
小西几哦1 天前
3D点云配准RPM-Net模型解读(附论文+源码)
人工智能·pytorch·3d
不吃香菜?1 天前
Opencv之dilib库:表情识别
人工智能·opencv·计算机视觉