深度学习NLP篇—基于词图的机械分词

无论是如今爆火的LLMs(Large Language Models)技术,还是传统的NLP技术,分词环节都是至关重要的一步。为了更好地了解中文自然语言处理的关键环节,今天我想和大家分享分词技术---基于词图的机械分词法。

本文主要围绕中文分词为主进行讲解,我会从分词定义及原因,分词的应用场景,分词的难点,什么是语言模型,马尔科夫假设,基于词图的分词方法这几个方面来书写这篇文章。

完整文章: 点击查看原文

相关推荐
woshihonghonga3 分钟前
Deepseek在它擅长的AI数据处理领域还有是有低级错误【k折交叉验证中每折样本数计算】
人工智能·python·深度学习·机器学习
乌恩大侠6 分钟前
以 NVIDIA Sionna Research Kit 赋能 AI 原生 6G 科研
人工智能·usrp
三掌柜66618 分钟前
借助 Kiro:实现《晚间手机免打扰》应用,破解深夜刷屏困境
人工智能·aws
飞雁科技18 分钟前
CRM客户管理系统定制开发:如何精准满足企业需求并提升效率?
大数据·运维·人工智能·devops·驻场开发
飞雁科技21 分钟前
上位机软件定制开发技巧:如何打造专属工业解决方案?
大数据·人工智能·软件开发·devops·驻场开发
这张生成的图像能检测吗32 分钟前
SAMWISE:为文本驱动的视频分割注入SAM2的智慧
人工智能·图像分割·视频·时序
antonytyler43 分钟前
机器学习实践项目(二)- 房价预测增强篇 - 特征工程一
人工智能·机器学习
N 年 后43 分钟前
cursor和传统idea的区别是什么?
java·人工智能·intellij-idea
AI Echoes1 小时前
LangChain 使用语义路由选择不同的Prompt模板
人工智能·python·langchain·prompt·agent
Wilber的技术分享1 小时前
【大模型实战笔记 6】Prompt Engineering 提示词工程
人工智能·笔记·llm·prompt·大语言模型·提示词工程