深度学习NLP篇—基于词图的机械分词

无论是如今爆火的LLMs(Large Language Models)技术,还是传统的NLP技术,分词环节都是至关重要的一步。为了更好地了解中文自然语言处理的关键环节,今天我想和大家分享分词技术---基于词图的机械分词法。

本文主要围绕中文分词为主进行讲解,我会从分词定义及原因,分词的应用场景,分词的难点,什么是语言模型,马尔科夫假设,基于词图的分词方法这几个方面来书写这篇文章。

完整文章: 点击查看原文

相关推荐
Sui_Network23 分钟前
备受期待的 POP 射击游戏 XOCIETY 正式在 Epic Games Store 开启体验
人工智能·游戏·rpc·区块链·量子计算·graphql
漫长的~以后36 分钟前
GPT-5.2深度拆解:多档位自适应架构如何重塑AI推理效率
人工智能·gpt·架构
爱笑的眼睛1142 分钟前
自动机器学习组件的深度解析:超越AutoML框架的底层架构
java·人工智能·python·ai
LCG米44 分钟前
嵌入式Python工业环境监测实战:MicroPython读取多传感器数据
开发语言·人工智能·python
努力的BigJiang1 小时前
Cube-slam复现及报错解决
人工智能
ComputerInBook1 小时前
代数基本概念理解——特征向量和特征值
人工智能·算法·机器学习·线性变换·特征值·特征向量
漫长的~以后2 小时前
Edge TPU LiteRT V2拆解:1GB内存设备也能流畅跑AI的底层逻辑
前端·人工智能·edge
星火10242 小时前
“重生”之我用 Solo 写了一盘中国象棋
人工智能·ai编程
祝余Eleanor2 小时前
Day37 模型可视化与推理
人工智能·python·深度学习
是Dream呀2 小时前
【openFuyao】openFuyao社区AI推理加速组件技术解析与实践
人工智能·架构·openfuyao