深度学习NLP篇—基于词图的机械分词

无论是如今爆火的LLMs(Large Language Models)技术,还是传统的NLP技术,分词环节都是至关重要的一步。为了更好地了解中文自然语言处理的关键环节,今天我想和大家分享分词技术---基于词图的机械分词法。

本文主要围绕中文分词为主进行讲解,我会从分词定义及原因,分词的应用场景,分词的难点,什么是语言模型,马尔科夫假设,基于词图的分词方法这几个方面来书写这篇文章。

完整文章: 点击查看原文

相关推荐
神马行空1 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队1 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
mosquito_lover12 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
契合qht53_shine2 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Naomi5212 小时前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼2 小时前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构
程序员安仔2 小时前
每天学新 AI 工具好累?我终于发现了“一键全能且免费不限量”的国产终极解决方案
人工智能
闭月之泪舞2 小时前
OpenCv(五)——边缘检测
人工智能·计算机视觉