LoRA:低秩分解微调与代码

传统的微调,即微调全量参数,就是上面的公式,但是我们可以通过两个矩阵,来模拟这个全量的矩阵,如果原来的W是(N * N)维度,我们可以通过两个(N * R) 和 (R * N)的矩阵矩阵乘,来模拟微调的结果。

方法很简单,直接上代码

1. LoRA层:

python3 复制代码
import math

class LoRALayer(torch.nn.Module):
    def __init__(self, in_dim, out_dim, rank, alpha):
        super().__init__()
        self.A = torch.nn.Parameter(torch.empty(in_dim, rank))
        torch.nn.init.kaiming_uniform_(self.A, a=math.sqrt(5))  # similar to standard weight initialization
        self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
        self.alpha = alpha

    def forward(self, x):
        x = self.alpha * (x @ self.A @ self.B)
        return x

LoRALayer就是LoRA的旁侧连接,包括了两个矩阵A和B,A初始化,但是B是全0矩阵,这保证一开始LoRA对模型没有影响,即输出和原来完全相同。

我们注意到了两个参数,一个是rank,一个是alpha。rank控制了LoRA旁侧连接的秩,这就是LoRA微调参数量较小的原因所在,因为他是由两个小的矩阵构成的。alpha控制LoRA对原来Linear的影响。

2. LoRA替代层

知道了LoRA的原理,现在只需要在模型中加入LoRA即可。但是LoRA要如何加入呢,在模型中加入的话,需要修改前向传播的逻辑才能人为的修改,不难想到另外一种方法,我们直接替代原来的Linear层,用LinearWithLoRA替换,新的层既有原来的Linear,也有LoRA。

python 复制代码
class LinearWithLoRA(torch.nn.Module):
    def __init__(self, linear, rank, alpha):
        super().__init__()
        self.linear = linear
        self.lora = LoRALayer(
            linear.in_features, linear.out_features, rank, alpha
        )

    def forward(self, x):
        return self.linear(x) + self.lora(x)

3. 冻结原始参数

python3 复制代码
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total trainable parameters before: {total_params:,}")

for param in model.parameters():
    param.requires_grad = False

total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total trainable parameters after: {total_params:,}")

4. 修改网络

最后,我们只需要遍历网络,得到所有Linear层,并将他们设置为LinearWithLoRA即可。

python3 复制代码
def replace_linear_with_lora(model, rank, alpha):
    for name, module in model.named_children():
        if isinstance(module, torch.nn.Linear):
            # Replace the Linear layer with LinearWithLoRA
            setattr(model, name, LinearWithLoRA(module, rank, alpha))
        else:
            # Recursively apply the same function to child modules
            replace_linear_with_lora(module, rank, alpha)
相关推荐
leo__5201 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体1 小时前
云厂商的AI决战
人工智能
njsgcs2 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派2 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch2 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中3 小时前
第1章 机器学习基础
人工智能·机器学习
wyw00003 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI3 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20103 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲3 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程