为什么 Bert 的三个 Embedding 可以进行相加?

Embedding的本质

Embedding的数学本质,就是以one hot为输入的单层全连接。

也就是说,世界上本没什么Embedding,有的只是one hot。

现在我们将token,position,segment三者都用one hot表示,然后concat起来,然后才去过一个单层全连接,等价的效果就是三个Embedding相加。

在这里用一个简单的例子在尝试理解一下:

假设Token Embedding矩阵的维度为[4,768],Position Embedding的矩阵维度为[3,768],Segment Embedding矩阵维度为[2,768]。

对于一个word来说,假设它的Token one-hot为[1,0,0,0] ; 它的Position one-hot为[1,0,0],它的segment one-hot为[1,0]。

那么这个字最后的word Embedding,就是上面三种Embedding相加之和。

如此得到的word Embedding,事实上和concat后的特征:[1,0,0,0,1,0,0,1,0],在过维度为[4+3+2,768]=[9,768]的全连接层,得到的向量其实是一样的。

我们可以再换一个角度进行理解:

不妨直接将三个one-hot特征concat起来得到的[1,0,0,0,1,0,0,1,0],虽然形式上不再是one-hot了,但是可以将其映射到三个one-hot组成的特征空间,此时特征空间的维度为432=24,而在这个新的特征空间中,这个字的one-hot就是[1,0,0,0...] (23个0)。

此时,Embedding的矩阵维度就是[24,768],最后得到的word Embedding依然是和上面等效,但是三个小Embedding矩阵的大小会远远小于新特征空间对应的Embedding矩阵大小。

当然,在相同初始化方法的前提下,两种方式得到的word Embedding可能方差会有差别,但是BERT模型还有Layer Norm,会把Embedding结果统一到相同的分布。

所以BERT的三个Embedding相加,本质上可以看做一个特征融合,强大如BERT应该可以学到融合后特征的语义信息的。

转自知乎,侵权删:
https://www.zhihu.com/question/374835153

相关推荐
童话名剑40 分钟前
目标检测(吴恩达深度学习笔记)
人工智能·目标检测·滑动窗口·目标定位·yolo算法·特征点检测
木卫四科技1 小时前
【木卫四 CES 2026】观察:融合智能体与联邦数据湖的安全数据运营成为趋势
人工智能·安全·汽车
珠海西格电力6 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
启途AI6 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_17 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客7 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨7 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦7 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志7 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经7 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm