Day25 - 大模型的三大架构

大模型

  • 大语言模型
  • Large Language Models(LLMs)
  • 参数量:B Billion 十亿
    • 类脑设计:参数看作脑细胞,脑细胞越多,越聪明
    • 数学视角:y=F(x),参数看作自变量,自变量越多,函数越复杂,越能映射复杂的关系
  • 训练平台:
    • 工程上:不可能脱离GPU,而且需要高性能GPU
  • 训练数据:
    • 预训练:18T语料
      • 18T表示18万亿,一本红楼梦约50万token,18T语料相当于3600万本红楼梦
  • 训练时长
    • 原来:3 ~ 6个月
    • 现在:1 ~ 2个月

质的变化

本质:天下大势,分久必合,合久必分

小模型时代:

  • 单一职责原则
    • 一个场景:
      • 单独一个模型
      • 单独一个数据集
      • 单独训练
      • 单独评估
      • 单独部署
      • 单独维护
  • 一个系统:
    • 挂了很多微服务
    • 挂了很多的小模型

大模型时代:AGI(Artificial General Intelligence)

  • 大一统
    • 一个系统:
      • 挂了一个大模型
        • 通过指令遵循,可以同时解决不同的问题
      • 多模态大模型

生成式人工智能 VS 判别式人工智能

Generative AI

创作性

如何进行人机协同是下一步的重点

具身机器人

大语言模型的架构

  • 架构一:Encoder - Decoder架构
    • 直接把 transformer 变厚即可
    • T5:Text to Text transfer Transformer
    • Google
    • 最正确、最正统、最没有歧义的路线,但死的最快。
      • 革命性的东西往往不按常理出牌,transformer的诞生代替了Seq2Seq,而Seq2Seq是全世界公认的生成式算法。
    • 首次提出:指令编码的基础理念
  • 架构二:Decoder - Only 架构
    • 把模型的复杂度降低
    • 除了GLM之外,这种架构是唯一的
      • LLaMA架构
        • LLaMA2
      • 千问系列
      • 豆包
      • 星火
      • kimi
  • 架构三:GLM(Prefix-Encoder-Only )架构
    • 融合 BERT 和 GPT 的优势,提出了一种混合结构
    • 理解上文:双向编码器的优势(BERT)
    • 生成下文:强大的自回归能力(GPT)
相关推荐
算家计算35 分钟前
一句话生成爆款视频!GPT-5赋能Agent,视频创作进入智能体时代
人工智能·aigc·agent
算家计算37 分钟前
使用指南 | Coze Studio 一站式AI智能体开发平台:低代码+多模型+RAG,快速打造你的专业级 AI Agent!
人工智能·agent·coze
hixiong1231 小时前
C# 编写一个XmlToDota的转换工具
开发语言·人工智能·yolo·c#
ManageEngineITSM2 小时前
云原生环境下的ITSM新趋势:从传统运维到智能化服务管理
大数据·运维·人工智能·云原生·itsm·工单系统
aneasystone本尊2 小时前
可视化探索 GraphRAG 的知识图谱
人工智能
嘀咕博客2 小时前
Krea Video:Krea AI推出的AI视频生成工具
人工智能·音视频·ai工具
As33100102 小时前
Manus AI 与多语言手写识别技术全解析
大数据·网络·人工智能
小璐乱撞2 小时前
超越传统 RAG:GraphRAG 全流程解析与实战指南
人工智能·后端
慧星云2 小时前
魔多 AI 上线提现功能 :将你的收益安稳入袋!
人工智能·云计算·aigc
gloomyfish2 小时前
【零代码】OpenCV C# 快速开发框架演示
人工智能·opencv·c#