Day25 - 大模型的三大架构

大模型

  • 大语言模型
  • Large Language Models(LLMs)
  • 参数量:B Billion 十亿
    • 类脑设计:参数看作脑细胞,脑细胞越多,越聪明
    • 数学视角:y=F(x),参数看作自变量,自变量越多,函数越复杂,越能映射复杂的关系
  • 训练平台:
    • 工程上:不可能脱离GPU,而且需要高性能GPU
  • 训练数据:
    • 预训练:18T语料
      • 18T表示18万亿,一本红楼梦约50万token,18T语料相当于3600万本红楼梦
  • 训练时长
    • 原来:3 ~ 6个月
    • 现在:1 ~ 2个月

质的变化

本质:天下大势,分久必合,合久必分

小模型时代:

  • 单一职责原则
    • 一个场景:
      • 单独一个模型
      • 单独一个数据集
      • 单独训练
      • 单独评估
      • 单独部署
      • 单独维护
  • 一个系统:
    • 挂了很多微服务
    • 挂了很多的小模型

大模型时代:AGI(Artificial General Intelligence)

  • 大一统
    • 一个系统:
      • 挂了一个大模型
        • 通过指令遵循,可以同时解决不同的问题
      • 多模态大模型

生成式人工智能 VS 判别式人工智能

Generative AI

创作性

如何进行人机协同是下一步的重点

具身机器人

大语言模型的架构

  • 架构一:Encoder - Decoder架构
    • 直接把 transformer 变厚即可
    • T5:Text to Text transfer Transformer
    • Google
    • 最正确、最正统、最没有歧义的路线,但死的最快。
      • 革命性的东西往往不按常理出牌,transformer的诞生代替了Seq2Seq,而Seq2Seq是全世界公认的生成式算法。
    • 首次提出:指令编码的基础理念
  • 架构二:Decoder - Only 架构
    • 把模型的复杂度降低
    • 除了GLM之外,这种架构是唯一的
      • LLaMA架构
        • LLaMA2
      • 千问系列
      • 豆包
      • 星火
      • kimi
  • 架构三:GLM(Prefix-Encoder-Only )架构
    • 融合 BERT 和 GPT 的优势,提出了一种混合结构
    • 理解上文:双向编码器的优势(BERT)
    • 生成下文:强大的自回归能力(GPT)
相关推荐
源于花海3 分钟前
迁移学习的第三类方法:子空间学习(2)——流形学习
人工智能·机器学习·迁移学习·流形学习·子空间学习
方安乐4 分钟前
杂记:文档解析器之MinerU
人工智能
AI猫站长9 分钟前
快讯|星海图、众擎机器人、魔法原子释放IPO信号,2026年或成上市大年
人工智能·机器人·具身智能·灵心巧手·上市·星海图·众擎机器人
鲁邦通物联网11 分钟前
基于容器化的边缘计算网关应用部署实践:Python+MQTT
人工智能·边缘计算·数据采集·工业数据采集·边缘计算网关·5g数采
方安乐11 分钟前
杂记:文档解析器
人工智能
+电报dapp12918 分钟前
2025区块链革命:当乐高式公链遇见AI预言机,三大行业已被颠覆
人工智能·金融·web3·去中心化·区块链·哈希算法·零知识证明
测试人社区-浩辰19 分钟前
AI与区块链结合的测试验证方法
大数据·人工智能·分布式·后端·opencv·自动化·区块链
木头程序员23 分钟前
去中心化AI数据共识难题破解:区块链、联邦学习与数据确权的协同之道
人工智能·去中心化·区块链
Yngz_Miao28 分钟前
【深度学习】语义分割损失函数之SemScal Loss
人工智能·深度学习·语义分割·损失函数·semscalloss
玄同76529 分钟前
深入理解 SQLAlchemy 的 relationship:让 ORM 关联像 Python 对象一样简单
人工智能·python·sql·conda·fastapi·pip·sqlalchemy