以下是一些可用转化的数据类型和输出结果:
1. 字典(Dictionary)
            
            
              python
              
              
            
          
          data = {'Name': ['Tom', 'Nick', 'John', 'Alice'],
        'Age': [20, 21, 19, 18],
        'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}
df = pd.DataFrame(data)
        输出:
      Name  Age         City
0      Tom   20     New York
1     Nick   21  Los Angeles
2     John   19      Chicago
3    Alice   18      Houston
        2. 列表(List)
            
            
              python
              
              
            
          
          data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
df = pd.DataFrame(data)
        输出:
   0  1  2
0  1  2  3
1  4  5  6
2  7  8  9
        3. NumPy数组(NumPy Array)
            
            
              python
              
              
            
          
          import numpy as np
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df = pd.DataFrame(data)
        输出:
   0  1  2
0  1  2  3
1  4  5  6
2  7  8  9
        4. 列表的列表(List of Lists)
            
            
              python
              
              
            
          
          data = [[1, 'Alice'], [2, 'Bob'], [3, 'Charlie']]
df = pd.DataFrame(data, columns=['ID', 'Name'])
        输出:
   ID     Name
0   1    Alice
1   2      Bob
2   3  Charlie
        5. 其他pandas对象
            
            
              python
              
              
            
          
          s1 = pd.Series([1, 2, 3], name='A')
s2 = pd.Series(['Alice', 'Bob', 'Charlie'], name='B')
df = pd.DataFrame([s1, s2])
        输出:
   A     B
0  1  Alice
1  2     Bob
2  3 Charlie
        6. 标量值(Scalar)
            
            
              python
              
              
            
          
          data = 5
df = pd.DataFrame([data])
        输出:
0
5
        7. 嵌套字典(Nested Dictionary)
            
            
              python
              
              
            
          
          data = {'Person': {'Name': ['Tom', 'Nick', 'John', 'Alice'],
                  'Age': [20, 21, 19, 18]},
        'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}
df = pd.DataFrame(data)
        输出:
   Person   City
   Name Age      Name
0    Tom   20  New York
1   Nick   21 Los Angeles
2   John   19     Chicago
3  Alice   18      Houston
        请注意,这些输出是基于pandas的标准设置,实际输出可能会根据你的pandas版本和环境设置有所不同。