Python利用chromedriver爬取商品主图数据

1.需要安装chromedriver

Chrome下载地址

ChromeDriver官网下载地址:https://sites.google.com/chromium.org/driver/downloads

ChromeDriver官网最新版下载地址:https://googlechromelabs.github.io/chrome-for-testing/

ChromeDriver国内镜像下载地址:https://registry.npmmirror.com/binary.html?path=chromedriver/

ChromeDriver国内镜像最新版下载地址:https://registry.npmmirror.com/binary.html?path=chrome-for-testing/

本地Chrome版本

确认你的Chrome浏览器版本。你可以在Chrome浏览器中打开 chrome://settings/help 查看版本号。

2.配置环境变量

使用 sysdm.cpl 打开环境变量

编辑 系统变量 中的 Path 变量,把 ChromeDriver 解压路径追加在Path变量中。

3.python pip命令导包

python 复制代码
import os
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from bs4 import BeautifulSoup
import pandas as pd
import chardet
import requests
import time

# 定义保存图片的文件夹路径
save_folder = 'jd_item_images'
if not os.path.exists(save_folder):
    os.makedirs(save_folder)

# 检测并读取CSV文件编码
def detect_encoding(file_path):
    with open(file_path, 'rb') as file:
        raw_data = file.read(1000)
        result = chardet.detect(raw_data)
        return result['encoding']

csv_file_path = 'jd_sku2.csv'  # 确保这是你的CSV文件的正确路径
encoding = detect_encoding(csv_file_path)

# 使用检测到的编码来读取整个文件
df = pd.read_csv(csv_file_path, encoding=encoding)

# 获取商品ID列表(假设商品编号在第三列,即索引为2)
product_ids = df.iloc[:, 2].dropna().astype(str).tolist()

# 设置Chrome选项
chrome_options = Options()
chrome_options.add_argument("--headless")  # 不打开浏览器窗口
chrome_options.add_argument("--disable-gpu")
chrome_options.add_argument("--no-sandbox")

# 指定ChromeDriver路径
service = Service(executable_path=r'D:\chromedriver\chromedriver-win64\chromedriver.exe')  # 替换为你的chromedriver路径

# 初始化WebDriver
driver = webdriver.Chrome(service=service, options=chrome_options)

for product_id in product_ids:
    try:
        url = f'https://item.jd.com/{product_id}.html'

        driver.get(url)
        time.sleep(5)  # 等待页面加载完成,可以根据实际情况调整等待时间

        # 获取并解析HTML结构
        page_source = driver.page_source
        soup = BeautifulSoup(page_source, 'html.parser')

        # 查找charset为gbk的<script>标签
        # script_gbk_tag = soup.find('script', {'charset': 'gbk'})
        # if script_gbk_tag:
        #
        #     print(f"Content of <script charset='gbk'> for product ID {product_id}:")
        #
        #     print("首图链接")  # 分隔线
        #
        #     print(script_gbk_tag.string.strip())
        #
        #     # 666666666666666
        #
        #     print("-" * 80)  # 分隔线
        #
        # else:
        #     print(f"No <script charset='gbk'> found for product ID: {product_id}")

        # 尝试获取商品图片链接并保存图片
        img_tag = soup.find('img', {'id': 'spec-img'}) or soup.find('img', {'class': 'jqzoom'})
        if img_tag and 'src' in img_tag.attrs:
            img_url = 'https:' + img_tag['src'] if img_tag['src'].startswith('//') else img_tag['src']

            img_response = requests.get(img_url, timeout=10)
            img_response.raise_for_status()

            img_save_path = os.path.join(save_folder, f'{product_id}.jpg')
            with open(img_save_path, 'wb') as img_file:
                img_file.write(img_response.content)

            print(f'Successfully saved image for product ID: {product_id}')
        else:
            print(f'Failed to find image URL for product ID: {product_id}')
    except Exception as e:
        print(f'Error processing product ID {product_id}: {e}')

# 关闭浏览器
driver.quit()
相关推荐
Liekkas Kono2 分钟前
RapidOCR Python 贡献指南
开发语言·python·rapidocr
张张努力变强9 分钟前
C++ STL string 类:常用接口 + auto + 范围 for全攻略,字符串操作效率拉满
开发语言·数据结构·c++·算法·stl
xyq202411 分钟前
Matplotlib 绘图线
开发语言
玄同76513 分钟前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
m0_6948455714 分钟前
tinylisp 是什么?超轻量 Lisp 解释器编译与运行教程
服务器·开发语言·云计算·github·lisp
春日见20 分钟前
如何创建一个PR
运维·开发语言·windows·git·docker·容器
爱吃泡芙的小白白21 分钟前
环境数据多维关系探索利器:Pairs Plot 完全指南
python·信息可视化·数据分析·环境领域·pairs plot
C++ 老炮儿的技术栈23 分钟前
VS2015 + Qt 实现图形化Hello World(详细步骤)
c语言·开发语言·c++·windows·qt
派葛穆30 分钟前
Python-批量安装依赖
开发语言·python