ZNN零化神经网络及其在机器人上的应用

1.解等式约束问题

1.1等式QP问题描述

考虑如下等式约束的时变二次规划(QP)问题:

采用拉格朗日乘数法将其转换为无约束优化问题:

对未知量求偏导:

将上式整理成矩阵的形式:

1.2ZNN解等式约束问题

定义误差函数:

ZNN模型的误差动态方程:

其中,ρ为可调参数,越大收敛越快,不同维度可以用不同的ρ。为ZNN神经网络激活函数。

因此,求解等式QP问题的零化神经网络ZNN模型如下:

激活函数的常见及改进计算方法:

(1)线性饱和激活函数

(2)Sigmoid激活函数

(3)有限时间收敛的激活函数(改进)

1.3仿真举例

考虑如下二次规划问题:

结果如下:

2.解等式和不等式约束问题

2.1等式和不等式约束问题描述

考虑如下不等式/等式约束的时变二次规划(QP)问题:

根据KKT条件,将上式写为:

其中,为等式和不等式约束的拉格朗日乘子,输出如下:

将上式写成矩阵形式:

2.2ZNN解等式和不等式约束问题

定义误差函数:

动态误差方程:

ZNN迭代求解模型:

其中,为ZNN激活函数,为可调节参数。

3.在机器人上的应用

3.1在冗余机器人及关节故障轨迹跟踪上的应用

冗余机械臂重复运动规划旨在消除冗余机械臂重复执行末端封闭轨迹任务时的关节角漂移现象,具体地,希望机械臂各关节角在一个任务周期结束后,仍然回到期望起始角度。每个任务周期以同一初始关节状态运行,可避免机械臂产生非期望的关节轨迹,有助于封闭轨迹重复作业的安全运行。机械臂轨迹规划的基本做法是基于机械臂运动学模型,通过给定的期望末端笛卡尔位置求取合适的关节角度。考虑n自由度冗余机械臂,其关节角度和末端执行器位置关系如下:

其中,r(t)为t时刻机械臂末端执行器在笛卡尔坐标系下位置坐标,θ(t)表示对应时刻的关节角度向量,f(·)表示关节角与机械臂末端位置间的非线性映射关系。两边同时求取时间导数:

其中,J(θ(t))为机器人的雅可比矩阵。则机器人的重复运动规划问题可描述为:

写成矩阵形式为:

最终效果如下:

3.2在线对机器人进行动力学参数辨识

3.3基于基于机器人动力学模型的实时控制

4.视频展示

ZNN零化神经网络---在机器人冗余控制及关节故障轨迹跟踪上的应用

技术/代码/文章复现/教学指导,交流邮箱/企鹅(欢迎交流、讨论、私信):3531225003@qq.com

我的weChat:brave_gtq

打赏请链接:飞舞的哲

相关推荐
救救孩子把6 小时前
14-机器学习与大模型开发数学教程-第1章 1-6 费马定理与极值判定
人工智能·数学·机器学习
救救孩子把6 小时前
11-机器学习与大模型开发数学教程-第1章1-3 极限与连续性
人工智能·数学·机器学习
OG one.Z6 小时前
01_机器学习初步
人工智能·机器学习
HyperAI超神经6 小时前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克
nju_spy7 小时前
华为AI岗 -- 笔试(一)
人工智能·深度学习·机器学习·华为·笔试·dbscan·掩码多头自注意力
MYX_3099 小时前
第四章 神经网络的基本组件
pytorch·深度学习·神经网络·学习
OpenBayes9 小时前
教程上新|重新定义下一代 OCR:IBM 最新开源 Granite-docling-258M,实现端到端的「结构+内容」统一理解
人工智能·深度学习·机器学习·自然语言处理·ocr·图像识别·文档处理
C嘎嘎嵌入式开发9 小时前
【机器学习算法篇】K-近邻算法
算法·机器学习·近邻算法
ARM+FPGA+AI工业主板定制专家10 小时前
【JETSON+FPGA+GMSL】实测分享 | 如何实现激光雷达与摄像头高精度时间同步?
人工智能·数码相机·机器学习·fpga开发·机器人·自动驾驶
武子康10 小时前
AI-调查研究-105-具身智能 机器人学习数据采集:从示范视频到状态-动作对的流程解析
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能