ZNN零化神经网络及其在机器人上的应用

1.解等式约束问题

1.1等式QP问题描述

考虑如下等式约束的时变二次规划(QP)问题:

采用拉格朗日乘数法将其转换为无约束优化问题:

对未知量求偏导:

将上式整理成矩阵的形式:

1.2ZNN解等式约束问题

定义误差函数:

ZNN模型的误差动态方程:

其中,ρ为可调参数,越大收敛越快,不同维度可以用不同的ρ。为ZNN神经网络激活函数。

因此,求解等式QP问题的零化神经网络ZNN模型如下:

激活函数的常见及改进计算方法:

(1)线性饱和激活函数

(2)Sigmoid激活函数

(3)有限时间收敛的激活函数(改进)

1.3仿真举例

考虑如下二次规划问题:

结果如下:

2.解等式和不等式约束问题

2.1等式和不等式约束问题描述

考虑如下不等式/等式约束的时变二次规划(QP)问题:

根据KKT条件,将上式写为:

其中,为等式和不等式约束的拉格朗日乘子,输出如下:

将上式写成矩阵形式:

2.2ZNN解等式和不等式约束问题

定义误差函数:

动态误差方程:

ZNN迭代求解模型:

其中,为ZNN激活函数,为可调节参数。

3.在机器人上的应用

3.1在冗余机器人及关节故障轨迹跟踪上的应用

冗余机械臂重复运动规划旨在消除冗余机械臂重复执行末端封闭轨迹任务时的关节角漂移现象,具体地,希望机械臂各关节角在一个任务周期结束后,仍然回到期望起始角度。每个任务周期以同一初始关节状态运行,可避免机械臂产生非期望的关节轨迹,有助于封闭轨迹重复作业的安全运行。机械臂轨迹规划的基本做法是基于机械臂运动学模型,通过给定的期望末端笛卡尔位置求取合适的关节角度。考虑n自由度冗余机械臂,其关节角度和末端执行器位置关系如下:

其中,r(t)为t时刻机械臂末端执行器在笛卡尔坐标系下位置坐标,θ(t)表示对应时刻的关节角度向量,f(·)表示关节角与机械臂末端位置间的非线性映射关系。两边同时求取时间导数:

其中,J(θ(t))为机器人的雅可比矩阵。则机器人的重复运动规划问题可描述为:

写成矩阵形式为:

最终效果如下:

3.2在线对机器人进行动力学参数辨识

3.3基于基于机器人动力学模型的实时控制

4.视频展示

ZNN零化神经网络---在机器人冗余控制及关节故障轨迹跟踪上的应用

技术/代码/文章复现/教学指导,交流邮箱/企鹅(欢迎交流、讨论、私信):3531225003@qq.com

我的weChat:brave_gtq

打赏请链接:飞舞的哲

相关推荐
Master_oid12 小时前
机器学习27:增强式学习(Deep Reinforcement Learn)②
人工智能·学习·机器学习
Godspeed Zhao12 小时前
自动驾驶中的传感器技术88——Sensor Fusion(11)
人工智能·机器学习·自动驾驶
智算菩萨12 小时前
【Python机器学习】分类模型评估体系的全景解析:准确率、精确率、召回率、F1 分数与 AUC
python·机器学习·分类
byzh_rc12 小时前
[算法设计与分析-从入门到入土] 复杂算法
数据库·人工智能·算法·机器学习·支持向量机
Macbethad12 小时前
ROS机器人导航系统技术报告
机器人
机器学习之心12 小时前
BO-CNN-BiLSTM贝叶斯优化卷积双向长短期记忆神经网络多输入多输出预测,MATLAB代码
神经网络·matlab·cnn·bo-cnn-bilstm
万俟淋曦12 小时前
【论文速递】2025年第43周(Oct-19-25)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·机器人·论文·具身智能·robotic
其美杰布-富贵-李12 小时前
迁移学习与对抗迁移学习
人工智能·机器学习·迁移学习
Godspeed Zhao12 小时前
自动驾驶中的传感器技术85——Sensor Fusion(8)
人工智能·机器学习·自动驾驶
三块可乐两块冰12 小时前
【第二十五周】机器学习笔记二十四
人工智能·笔记·机器学习