大平台性能优化,提高平台写入数据库的另一种思路——阿雪技术观——未来之窗跨平台架构

一、平台卡顿

平台卡顿主要原因是数据库写入速度缓慢。当大量数据需要同时写入数据库时,由于数据库的性能限制、索引设置不合理、硬件资源不足(如内存、磁盘 I/O 性能)或写入操作的复杂性(如复杂的事务处理、大量的关联操作),导致写入过程耗时较长,从而影响了整个平台的响应速度,造成卡顿现象

二、优化代码,传统方式

在传统方式中,在插入数据前先检测数据是否存在,存在以下一些缺点:

  1. 额外的查询开销:执行检测操作需要向数据库发送查询请求,这增加了数据库的负担和响应时间,特别是在高并发环境下,可能会导致性能下降。

  2. 并发问题:在多线程或多进程并发环境中,可能会出现两个检测操作几乎同时进行,都认为数据不存在,然后都进行插入,导致数据重复。

  3. 降低并发性能:由于检测和插入操作不是原子性的,可能会导致锁竞争和阻塞,降低了系统的并发处理能力。

  4. 复杂的逻辑处理:需要额外编写和维护检测的逻辑代码,增加了开发和维护的复杂性。

  5. 可能的不一致性:如果在检测到不存在和实际插入之间,有其他操作插入了相同的数据,可能会导致不一致的结果。

  6. 对数据库性能的影响:频繁的检测操作可能会影响数据库缓存的命中率,降低数据库的整体性能。

三、改变实现思路,数据库约束

采用数据库约束来防止数据重复具有以下优势:

  1. 数据一致性保证:数据库约束由数据库系统自身强制实施,能够确保数据的一致性和准确性,避免了应用程序逻辑中的潜在漏洞导致的数据重复。

  2. 性能优化:数据库在处理约束时通常进行了优化,相比在应用层进行重复检测和处理,效率更高,尤其是在高并发场景下。

  3. 简化应用逻辑:将数据重复的检查和处理交给数据库,减轻了应用程序的负担,使应用代码更简洁,专注于核心业务逻辑。

  4. 原子性操作:数据库约束的执行通常是原子性的,能够避免并发情况下可能出现的中间状态导致的数据不一致问题。

  5. 自动处理:无需在应用程序的每次插入操作中都编写重复检查的代码,减少了代码量和出错的可能性。

  6. 数据库级别的完整性:有助于维护整个数据库的完整性,不仅在当前操作中,还包括与其他相关表和数据的关系。

  7. 易于管理和维护:一旦在数据库中定义了约束,其管理和维护相对集中和简单,不需要在多个应用程序模块中分别处理。

四、插入数据单条改为批量

五、查看结果

六、阿雪技术观

阿雪的技术观强调,在进行数据优化时,关键在于实现思路的融会贯通。各方应相互理解,以促进共同进步。

相关推荐
小冷coding2 小时前
【MySQL】MySQL 插入一条数据的完整流程(InnoDB 引擎)
数据库·mysql
鲨莎分不晴3 小时前
Redis 基本指令与命令详解
数据库·redis·缓存
专注echarts研发20年3 小时前
工业级 Qt 业务窗体标杆实现・ResearchForm 类深度解析
数据库·qt·系统架构
酷酷的鱼5 小时前
跨平台技术选型方案(2026年App实战版)
react native·架构·鸿蒙系统
周杰伦的稻香5 小时前
MySQL中常见的慢查询与优化
android·数据库·mysql
冉冰学姐5 小时前
SSM学生社团管理系统jcjyw(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面
数据库·ssm 框架·学生社团管理系统·多角色管理
nvd116 小时前
深入分析:Pytest异步测试中的数据库会话事件循环问题
数据库·pytest
appearappear6 小时前
如何安全批量更新数据库某个字段
数据库
The Open Group6 小时前
架构驱动未来:2026年数字化转型中的TOGAF®角色
架构
鸣弦artha6 小时前
Flutter 框架跨平台鸿蒙开发——Flutter引擎层架构概览
flutter·架构·harmonyos