java Kafka批量消费和单个消费消息

1、批量消费消息

1.1 配置参数

fetch.min.bytes:拉取的最小字节数

fetch.max.bytes:拉取的最大字节数

max.partition.fetch.bytes:分区拉取的最大字节数

fetch.max.wait.ms:拉取操作的最大等待时间

max.poll.records:拉取操作最大获取的记录数量

以上参数决定了一次消费能消费多少条消息。

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaBatchConsumerFactory() {
        return batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
    }

1.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaBatchConsumerFactory")
    public void batchConsume(List<ConsumerRecord<String, String>> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            List<String> valueList = records.stream()
                    .map(ConsumerRecord::value).collect(Collectors.toList());
            for (String value : valueList) {
                log.info("批量消费topic:{}, value:{}", topicName, value);
            }
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

1.3 消费结果

2、单个消费消息

2.1 配置参数

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaSingleConsumerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> resultFactory = batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
        resultFactory.setBatchListener(false);
        return resultFactory;
    }

2.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaSingleConsumerFactory")
    public void singleConsume(ConsumerRecord<String, String> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            log.info("单个消费 topic:{}, value:{}", topicName, records.value());
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

2.3 消费结果

注:

部分代码未能在博客内体现,请点击以下链接跳转至Gitee的xudongbase项目的kafka分支。

xudongbase: 主要是项目中可以用到的共通方法,现有easyexcel分支在持续更新中。欢迎大家Star和提交Issues。easyexcel分支:批量设置样式,批量添加批注,批量合并单元格,设置冻结行和列,设置行高列宽,隐藏行和列,绑定下拉框数据,设置水印,插入图片 - Gitee.comhttps://gitee.com/xudong_master/xudongbase/tree/kafka/

相关推荐
2501_9418779812 小时前
Python在微服务高并发异步日志聚合与智能告警分析架构中的实践
kafka
SuperHeroWu715 小时前
【HarmonyOS 6】UIAbility跨设备连接详解(分布式软总线运用)
分布式·华为·harmonyos·鸿蒙·连接·分布式协同·跨设备链接
杜子不疼.15 小时前
【探索实战】从0到1打造分布式云原生平台:Kurator全栈实践指南
分布式·云原生
最笨的羊羊16 小时前
Flink CDC系列之:Kafka CSV 序列化器CsvSerializationSchema
kafka·csv·schema·flink cdc系列·serialization·序列化器
最笨的羊羊17 小时前
Flink CDC系列之:Kafka的Debezium JSON 结构定义类DebeziumJsonStruct
kafka·debezium·flink cdc系列·debezium json·结构定义类·jsonstruct
m***l11518 小时前
集成RabbitMQ+MQ常用操作
分布式·rabbitmq
拾忆,想起19 小时前
Dubbo分组(Group)使用指南:实现服务接口的多版本管理与环境隔离
分布式·微服务·性能优化·架构·dubbo
回家路上绕了弯19 小时前
彻底解决超卖问题:从单体到分布式的全场景技术方案
分布式·后端
拾忆,想起20 小时前
Dubbo动态配置实时生效全攻略:零停机实现配置热更新
分布式·微服务·性能优化·架构·dubbo
每天进步一点_JL1 天前
事务与消息中间件:分布式系统中的可见性边界问题
分布式·后端