java Kafka批量消费和单个消费消息

1、批量消费消息

1.1 配置参数

fetch.min.bytes:拉取的最小字节数

fetch.max.bytes:拉取的最大字节数

max.partition.fetch.bytes:分区拉取的最大字节数

fetch.max.wait.ms:拉取操作的最大等待时间

max.poll.records:拉取操作最大获取的记录数量

以上参数决定了一次消费能消费多少条消息。

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaBatchConsumerFactory() {
        return batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
    }

1.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaBatchConsumerFactory")
    public void batchConsume(List<ConsumerRecord<String, String>> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            List<String> valueList = records.stream()
                    .map(ConsumerRecord::value).collect(Collectors.toList());
            for (String value : valueList) {
                log.info("批量消费topic:{}, value:{}", topicName, value);
            }
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

1.3 消费结果

2、单个消费消息

2.1 配置参数

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaSingleConsumerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> resultFactory = batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
        resultFactory.setBatchListener(false);
        return resultFactory;
    }

2.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaSingleConsumerFactory")
    public void singleConsume(ConsumerRecord<String, String> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            log.info("单个消费 topic:{}, value:{}", topicName, records.value());
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

2.3 消费结果

注:

部分代码未能在博客内体现,请点击以下链接跳转至Gitee的xudongbase项目的kafka分支。

xudongbase: 主要是项目中可以用到的共通方法,现有easyexcel分支在持续更新中。欢迎大家Star和提交Issues。easyexcel分支:批量设置样式,批量添加批注,批量合并单元格,设置冻结行和列,设置行高列宽,隐藏行和列,绑定下拉框数据,设置水印,插入图片 - Gitee.comhttps://gitee.com/xudong_master/xudongbase/tree/kafka/

相关推荐
西***634720 小时前
从信号处理到智能协同:高清混合矩阵全链路技术拆解,分布式系统十大趋势抢先看
网络·分布式·矩阵
阿维的博客日记20 小时前
从夯到拉的Redis和MySQL双写一致性解决方案排名
redis·分布式·mysql
好玩的Matlab(NCEPU)21 小时前
消息队列RabbitMQ、Kafka、ActiveMQ 、Redis、 ZeroMQ、Apache Pulsar对比和如何使用
kafka·rabbitmq·activemq
笨蛋少年派1 天前
zookeeper简介
分布式·zookeeper·云原生
鸽鸽程序猿1 天前
【RabbitMQ】简介
分布式·rabbitmq
在未来等你1 天前
Kafka面试精讲 Day 29:版本升级与平滑迁移
大数据·分布式·面试·kafka·消息队列
在未来等你1 天前
Kafka面试精讲 Day 30:Kafka面试真题解析与答题技巧
大数据·分布式·面试·kafka·消息队列
在未来等你1 天前
Elasticsearch面试精讲 Day 30:Elasticsearch面试真题解析与答题技巧
大数据·分布式·elasticsearch·搜索引擎·面试
在未来等你1 天前
Elasticsearch面试精讲 Day 27:备份恢复与灾难恢复
大数据·分布式·elasticsearch·搜索引擎·面试