java Kafka批量消费和单个消费消息

1、批量消费消息

1.1 配置参数

fetch.min.bytes:拉取的最小字节数

fetch.max.bytes:拉取的最大字节数

max.partition.fetch.bytes:分区拉取的最大字节数

fetch.max.wait.ms:拉取操作的最大等待时间

max.poll.records:拉取操作最大获取的记录数量

以上参数决定了一次消费能消费多少条消息。

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaBatchConsumerFactory() {
        return batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
    }

1.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaBatchConsumerFactory")
    public void batchConsume(List<ConsumerRecord<String, String>> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            List<String> valueList = records.stream()
                    .map(ConsumerRecord::value).collect(Collectors.toList());
            for (String value : valueList) {
                log.info("批量消费topic:{}, value:{}", topicName, value);
            }
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

1.3 消费结果

2、单个消费消息

2.1 配置参数

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaSingleConsumerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> resultFactory = batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
        resultFactory.setBatchListener(false);
        return resultFactory;
    }

2.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaSingleConsumerFactory")
    public void singleConsume(ConsumerRecord<String, String> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            log.info("单个消费 topic:{}, value:{}", topicName, records.value());
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

2.3 消费结果

注:

部分代码未能在博客内体现,请点击以下链接跳转至Gitee的xudongbase项目的kafka分支。

xudongbase: 主要是项目中可以用到的共通方法,现有easyexcel分支在持续更新中。欢迎大家Star和提交Issues。easyexcel分支:批量设置样式,批量添加批注,批量合并单元格,设置冻结行和列,设置行高列宽,隐藏行和列,绑定下拉框数据,设置水印,插入图片 - Gitee.comhttps://gitee.com/xudong_master/xudongbase/tree/kafka/

相关推荐
深圳蔓延科技19 分钟前
Kafka的高性能之路
后端·kafka
努力的小郑7 小时前
从一次分表实践谈起:我们真的需要复杂的分布式ID吗?
分布式·后端·面试
AAA修煤气灶刘哥20 小时前
别让Redis「歪脖子」!一次搞定数据倾斜与请求倾斜的捉妖记
redis·分布式·后端
阿里云云原生1 天前
嘉银科技基于阿里云 Kafka Serverless 提升业务弹性能力,节省成本超过 20%
kafka·serverless
Aomnitrix1 天前
知识管理新范式——cpolar+Wiki.js打造企业级分布式知识库
开发语言·javascript·分布式
程序消消乐1 天前
Kafka 入门指南:从 0 到 1 构建你的 Kafka 知识基础入门体系
分布式·kafka
智能化咨询1 天前
Kafka架构:构建高吞吐量分布式消息系统的艺术——进阶优化与行业实践
分布式·架构·kafka
Chasing__Dreams1 天前
kafka--基础知识点--5.2--最多一次、至少一次、精确一次
分布式·kafka
在未来等你2 天前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试