java Kafka批量消费和单个消费消息

1、批量消费消息

1.1 配置参数

fetch.min.bytes:拉取的最小字节数

fetch.max.bytes:拉取的最大字节数

max.partition.fetch.bytes:分区拉取的最大字节数

fetch.max.wait.ms:拉取操作的最大等待时间

max.poll.records:拉取操作最大获取的记录数量

以上参数决定了一次消费能消费多少条消息。

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaBatchConsumerFactory() {
        return batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
    }

1.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_BATCH_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaBatchConsumerFactory")
    public void batchConsume(List<ConsumerRecord<String, String>> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            List<String> valueList = records.stream()
                    .map(ConsumerRecord::value).collect(Collectors.toList());
            for (String value : valueList) {
                log.info("批量消费topic:{}, value:{}", topicName, value);
            }
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

1.3 消费结果

2、单个消费消息

2.1 配置参数

java 复制代码
    @Bean
    public KafkaListenerContainerFactory<?> kafkaSingleConsumerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> resultFactory = batchFactory(consumerConfig(KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP, KafkaConsumerResetOffsetEnum.EARLIEST.getType()));
        resultFactory.setBatchListener(false);
        return resultFactory;
    }

2.2 消费代码

java 复制代码
    @KafkaListener(groupId = KafkaConsumerGroupIdConstant.KAFKA_CONSUMER_SINGLE_GROUP,
            topics = KafkaTopicConstant.KAFKA_TOPIC,
            containerFactory = "kafkaSingleConsumerFactory")
    public void singleConsume(ConsumerRecord<String, String> records, Acknowledgment ack) {
        String topicName = KafkaTopicConstant.KAFKA_TOPIC;
        try {
            log.info("单个消费 topic:{}, value:{}", topicName, records.value());
            ack.acknowledge();
        } catch (Exception e) {
            log.error("kafka消费{}:", topicName, e);
        }
    }

2.3 消费结果

注:

部分代码未能在博客内体现,请点击以下链接跳转至Gitee的xudongbase项目的kafka分支。

xudongbase: 主要是项目中可以用到的共通方法,现有easyexcel分支在持续更新中。欢迎大家Star和提交Issues。easyexcel分支:批量设置样式,批量添加批注,批量合并单元格,设置冻结行和列,设置行高列宽,隐藏行和列,绑定下拉框数据,设置水印,插入图片 - Gitee.comhttps://gitee.com/xudong_master/xudongbase/tree/kafka/

相关推荐
天天进步20152 小时前
多线程与分布式:使用 Botasaurus 轻松构建大规模数据采集集群
分布式·爬虫
川西胖墩墩6 小时前
复杂任务的分布式智能解决方案
人工智能·分布式
2501_941805318 小时前
使用Python和Go构建高性能分布式任务调度系统的实践分享
分布式·python·golang
徐先生 @_@|||9 小时前
数据分析体系全览导图综述
大数据·hadoop·分布式·数据分析
虹科网络安全10 小时前
艾体宝洞察 | 缓存策略深度解析:从内存缓存到 Redis 分布式缓存
redis·分布式·缓存
廋到被风吹走12 小时前
【消息队列】选型深度对比:Kafka vs RocketMQ vs RabbitMQ
kafka·rabbitmq·rocketmq
YE1234567_13 小时前
从底层零拷贝到分布式架构:深度剖析现代 C++ 构建超大规模高性能 AI 插件引擎的实战之道
c++·分布式·架构
笃行客从不躺平13 小时前
Seata + AT 模式 复习记录
java·分布式
像少年啦飞驰点、13 小时前
Java大厂面试真题:Spring Boot + Kafka + Redis 在电商场景下的实战应用
java·spring boot·redis·分布式·kafka·面试题·电商秒杀
徐先生 @_@|||14 小时前
基于Spark配置+缓存策略+Junpyter Notebook 实现Spark数据加速调试
大数据·分布式·缓存·spark