基于LSTM长短期记忆神经网络的多分类预测【MATLAB】

在深度学习中,长短期记忆网络(LSTM, Long Short-Term Memory)是一种强大的循环神经网络(RNN)变体,专门为解决序列数据中的长距离依赖问题而设计。LSTM因其强大的记忆能力,广泛应用于自然语言处理、时间序列分析和语音识别等任务中。本文将详细介绍LSTM的原理、结构以及其在多分类预测中的实现。

一、LSTM

LSTM由Hochreiter和Schmidhuber在1997年提出,是一种能够有效避免传统RNN梯度消失或梯度爆炸问题的网络架构。与传统RNN不同,LSTM通过引入记忆单元(Cell State)和门控机制(Gate Mechanism),实现了对长时间序列依赖信息的捕获和控制。

二、LSTM的核心结构与工作原理

LSTM的核心在于其结构中包含的三个门:
输入门(Input Gate) :控制新信息对记忆单元的更新程度。
遗忘门(Forget Gate) :决定需要忘记的历史信息。
输出门(Output Gate):决定当前时间步需要输出的信息。

1. 记忆单元(Cell State)

记忆单元是LSTM中存储信息的核心组件,其状态可以通过门控机制进行动态更新。
2. 遗忘门

遗忘门控制需要从记忆单元中移除的信息
3. 输入门

输入门决定新信息加入记忆单元的程度
4. 输出门

输出门决定隐藏状态的更新

三、LSTM的优势

解决梯度问题:通过门控机制有效缓解梯度消失或爆炸问题。

强大的记忆能力:能够记住序列中的长距离依赖信息。

广泛适用性:在时间序列预测、文本分类、语音处理等任务中表现卓越。

四、LSTM部分代码与参数设置

c 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng('default');

%% 导入数据
res = xlsread('data.xlsx');

%% 划分训练集和测试集
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
% res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
L = size(res, 2) - outdim; % 输入特征维度
P_train = res(1: num_train_s, 1: L)';
T_train = res(1: num_train_s, L + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: L)';
T_test = res(num_train_s + 1: end, L + 1: end)';
N = size(P_test, 2);

%%  参数设置
options = trainingOptions('adam', ...       % Adam 梯度下降算法
    'MiniBatchSize', 128, ...               % 批大小
    'MaxEpochs', 1000, ...                  % 最大迭代次数
    'InitialLearnRate', 1e-2, ...           % 初始学习率
    'LearnRateSchedule', 'piecewise', ...   % 学习率下降
    'LearnRateDropFactor', 0.1, ...         % 学习率下降因子
    'LearnRateDropPeriod', 700, ...         % 经过700次训练后 学习率为 0.01 * 0.1
    'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集
    'ValidationPatience', Inf, ...          % 关闭验证
    'Plots', 'training-progress', ...       % 画出曲线
    'Verbose', false);

五、运行结果




六、代码与数据集下载

下载地址:https://mbd.pub/o/bread/Z5yclJ9p

相关推荐
小宋加油啊5 分钟前
深度学习小记(包括pytorch 还有一些神经网络架构)
pytorch·深度学习·神经网络
沛沛老爹8 分钟前
从线性到非线性:简单聊聊神经网络的常见三大激活函数
人工智能·深度学习·神经网络·激活函数·relu·sigmoid·tanh
何大春27 分钟前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
每天都要写算法(努力版)3 小时前
【神经网络与深度学习】训练集与验证集的功能解析与差异探究
人工智能·深度学习·神经网络
听风吹等浪起17 小时前
NLP实战(4):使用PyTorch构建LSTM模型预测糖尿病
人工智能·pytorch·自然语言处理·lstm
pljnb18 小时前
长短期记忆网络(LSTM)
人工智能·rnn·lstm
鸿蒙布道师1 天前
AI硬件遭遇“关税风暴“:中国科技企业如何破局?
人工智能·科技·嵌入式硬件·深度学习·神经网络·opencv·机器人
蹦蹦跳跳真可爱5891 天前
Python----深度学习(基于深度学习Pytroch线性回归和曲线回归)
pytorch·python·深度学习·神经网络·回归·线性回归
SophiaSSSSS1 天前
无标注文本的行业划分(行业分类)算法 —— 无监督或自监督学习
学习·算法·分类