neo4j 图表数据导入到 TuGraph

neo4j 图表数据导入到 TuGraph

前言:近期在引入阿里的 TuGraph 图数据库,需要将 原 neo4j 数据导入到新的 tugraph 数据库中。预期走csv文件导入导出,但因为格式和数据库设计问题,操作起来比较麻烦(可能是个人没有发现其他比较方便的办法),因此写了一个 python 脚本进行数据导入操作。

使用:python3,TuGraph 4.5.1

遇到的问题:tugraph 的节点需要一个主键,这个只能自行指定。

支持:指定节点,指定边。自动创建不存在的节点/边,数据导入批量导入节点,单条导入边(试过批量的,tugraph好像不支持 官网的 CALL db.upsertEdge 我的版本也还没实现)。

导入图示:

代码文件

python 复制代码
# import time
import json
from typing import Dict, List, cast


class GraphConnector():
    db_type: str = "tugraph"
    driver: str = "bolt"
    dialect: str = "cypher"
    batch_size: int = 100
    # 指定节点的主键
    node_pro_key: dict = dict({'Ren':'zjhm','Aj':'ajbh','Che':'rowkey','Hh':'rowkey','Sj':'dhhm'})
    #指定需要导入的边
    specified_relation = ['ajgx','th','tfj','sysj','sycl']
    #指定需要导入的节点
    specified_node = ['Ren','Aj','Che','Sj','Hh']
    def __init__(self, driver, graph):
        """Initialize the connector with a Neo4j driver."""
        self._driver = driver
        self._schema = None
        self._graph = graph
        self._session = None

    @classmethod
    def from_uri_db(
            cls, host: str, port: int, user: str, pwd: str, db_name: str, db_type: str
    ) -> "GraphConnector":
        """Create a new TuGraphConnector from host, port, user, pwd, db_name."""
        try:
            from neo4j import GraphDatabase
            cls.db_type = db_type
            db_url = f"{cls.driver}://{host}:{str(port)}"
            driver = GraphDatabase.driver(db_url, auth=(user, pwd))
            driver.verify_connectivity()
            return cast(GraphConnector, cls(driver=driver, graph=db_name))

        except ImportError as err:
            raise ImportError(
                "neo4j package is not installed, please install it with "
                "`pip install neo4j`"
            ) from err

    def create_graph_new(self, graph_name: str) -> bool:
        """Create a new graph in the database if it doesn't already exist."""
        try:
            with self._driver.session() as session:
                graph_list = session.run("CALL dbms.graph.listGraphs()").data()
                exists = any(item["graph_name"] == graph_name for item in graph_list)
                if not exists:
                    session.run(
                        f"CALL dbms.graph.createGraph('{graph_name}', '', 2048)"
                    )
        except Exception as e:
            raise Exception(f"Failed to create graph '{graph_name}': {str(e)}") from e

        return not exists

    def create_vertex_labels(self, json_data):
        try:
            with self._driver.session(database=self._graph) as session:
                # graph_list = session.run(f"CALL db.createVertexLabelByJson({json_data})").data()
                session.run(
                    "CALL db.createVertexLabelByJson($json_data)",
                    json_data=json_data
                )
        except Exception as e:
            raise Exception(f"Failed to create vertex_labels ") from e

    # 批量更新节点,没有就新增,有就更新
    def batch_update_node(self, json_data):
        try:
            with self._driver.session(database=self._graph) as session:
                # graph_list = session.run(f"CALL db.createVertexLabelByJson({json_data})").data()
                session.upsertVertex(
                    "CALL db.upsertVertex($json_data)",
                    json_data=json_data
                )
        except Exception as e:
            raise Exception(f"Failed to create vertex_labels ") from e

    # 批量更新关系,没有就新增,有就更新
    def batch_update_edge(self, json_data):
        try:
            with self._driver.session(database=self._graph) as session:
                # graph_list = session.run(f"CALL db.createVertexLabelByJson({json_data})").data()
                session.upsertVertex(
                    "CALL db.upsertEdge($json_data)",
                    json_data=json_data
                )
        except Exception as e:
            raise Exception(f"Failed to create vertex_labels ") from e


    def create_edge_labels(self, json_data):
        try:
            with self._driver.session(database=self._graph) as session:
                # graph_list = session.run(f"CALL db.createVertexLabelByJson({json_data})").data()
                session.run(
                    "CALL db.createEdgeLabelByJson($json_data)",
                    json_data=json_data
                )
        except Exception as e:
            raise Exception(f"Failed to create vertex_labels ") from e

    def run(self, query: str, fetch: str = "all") -> List:
        """Run query."""
        with self._driver.session(database=self._graph) as session:
            try:
                result = session.run(query)
                return list(result)
            except Exception as e:
                raise Exception(f"Query execution failed: {e}\nQuery: {query}") from e

    def check_label_exists(self, label: str, label_type: str) -> bool:
        with self._driver.session(database=self._graph) as session:
            # Run the query to get vertex labels
            if label_type == "node":
                raw_vertex_labels = session.run("CALL db.vertexLabels()").data()
                vertex_labels = [table_name["label"] for table_name in raw_vertex_labels]
                if label in vertex_labels:
                    return True
            else:
                # Run the query to get edge labels
                raw_edge_labels = session.run("CALL db.edgeLabels()").data()
                edge_labels = [table_name["label"] for table_name in raw_edge_labels]
                if label in edge_labels:
                    return True
            return False

    # 获取节点或边的结构
    def get_columns(self, table_name: str, table_type: str = "vertex") -> List[Dict]:
        """Retrieve the column for a specified vertex or edge table in the graph db."""
        with self._driver.session(database=self._graph) as session:
            data = []
            result = None
            if table_type == "vertex":
                result = session.run(f"CALL db.getVertexSchema('{table_name}')").data()
            else:
                result = session.run(f"CALL db.getEdgeSchema('{table_name}')").data()
            schema_info = json.loads(result[0]["schema"])
            for prop in schema_info.get("properties", []):
                prop_dict = {
                    "name": prop["name"],
                    "type": prop["type"],
                    "default_expression": "",
                    "is_in_primary_key": bool(
                        "primary" in schema_info
                        and prop["name"] == schema_info["primary"]
                    ),
                    "comment": prop["name"],
                }
                data.append(prop_dict)
            return data


    def close(self):
        """Close the Neo4j driver."""
        self._driver.close()



# {"name": "id", "type": "STRING", "optional": False},
# {"name": "name", "type": "STRING", "optional": False, "index": True},
# {"name": "num", "type": "STRING", "optional": False, "unique": True},
# {"name": "desc", "type": "STRING", "optional": True}
# 构建节点json语句用于tugraph创建节点
def bulid_node_json(node_name:str,pro_key:str ,node_properties):
    vertex_label_json = {
        "label": node_name,
        "primary": pro_key,
        "type": "VERTEX",
        "detach_property": True,
        "properties": [
        ]
    }
    for node_property in node_properties:
        proper_info = {"name": node_property[0], "type": "STRING", "optional": False}
        vertex_label_json['properties'].append(proper_info)
    return json.dumps(vertex_label_json)

def bulid_edge_json(edge_name:str,edge_properties,start_node_key,end_node_key):
    edge_label_json = {
        "label": edge_name,
        "type": "EDGE",
        "detach_property": True,
        "constraints": [],
        "properties": []
    }
    edge_label_json['constraints'].append([edge_properties[0][1][0],edge_properties[0][2][0]])
    # 这是在边属性中存储节点的主键(不需要也可以)
    # edge_label_json['properties'].append({"name": start_node_key if start_node_key != end_node_key else start_node_key+'1', "type": "STRING", "optional": False})
    # edge_label_json['properties'].append({"name": end_node_key if start_node_key != end_node_key else start_node_key+'2', "type": "STRING", "optional": False})
    for edge_property in edge_properties:
        proper_info = {"name": edge_property[0], "type": "STRING", "optional": True}
        edge_label_json['properties'].append(proper_info)
    return json.dumps(edge_label_json)

def neo4jNode2Tugrapg(connector,tugraphConn):
    query = """CALL db.labels() YIELD label
        RETURN label;"""
    print("Executing query:", query)
    results_nodes = connector.run(query)
    print(f"所有的节点:{results_nodes}")
    print("指定的节点:",connector.specified_node)

    for node in results_nodes:
        #获取节点结构
        query = f"""
                MATCH (n:{node[0]})
                UNWIND keys(n) AS key
                RETURN DISTINCT key"""
        node_properties = connector.run(query)
        if node[0] not in connector.specified_node and len(connector.specified_node) != 0:
            continue
        print(f"当前 neo4j 节点 {node[0]} , roperties : {node_properties}!!")
        if tugraphConn.check_label_exists(node[0],"node"):
            print(node[0],"节点已经存在!")
        else:
            print(node[0],"节点不存在,需要新建!")
            node_json = bulid_node_json(node[0],connector.node_pro_key[node[0]],node_properties)
            # 新建不存在的节点
            tugraphConn.create_vertex_labels(node_json)
        # neo4j中查询出当前节点标签下所有节点
        queryNode = f"MATCH (n:{node[0]}) RETURN n"
        # 构建插入语句同步节点
        synchronize_node(node[0],connector.run(queryNode),node_properties,tugraphConn)

# node_name 当前节点标签名
# node_result neo4j中查询出的节点结果
# tugraphConn tugraph连接器
# 构建新增节点语句并tugraphConn 执行,一次执行300条
#  CREATE (:node1 {id: "2", name: "李四", num: "001", desc: "李四的信息"}),
#        (:node1 {id: "3", name: "李四", num: "001", desc: "李四的信息"});
def synchronize_node(node_name:str,node_result,node_properties,tugraphConn):
    # 构建Cypher查询语句
    print(f"同步 {node_name} 节点共 {len(node_result)} 记录,请等待执行完成...")
    create_node_cypher_parts = []
    count = 0
    skip_num = 0
    for node in node_result:
        # print("aa",aa)
        item = node[0]._properties
        properties_list = []
        is_skip = False
        for key in node_properties:
            # 如果节点结构与当前节点属性结构不一致,则跳过当前节点
            if key[0] not in item.keys():
                skip_num += 1
                is_skip = True
                break

        if is_skip:
            continue

        for key, value in item.items():
            properties_list.append(f"{key}: '{value}'")
            # if isinstance(value, str):
            #     # 如果是字符串,则添加引号
            #     properties_list.append(f"{key}: '{value}'")
            # else:
            #     # 否则直接添加
            #     properties_list.append(f"{key}: {value}")
        cypher_query = f"(:{node_name} {{{', '.join(properties_list)}}})"
        create_node_cypher_parts.append(cypher_query)
        count += 1

        # 每300个节点执行一次TuGraph数据库操作
        if count % 300 == 0:
            create_node_cypher = f"CREATE {', '.join(create_node_cypher_parts)}"
            # print(create_node_cypher)  # 打印生成的Cypher查询语句以便调试
            tugraphConn.run(create_node_cypher)
            create_node_cypher_parts = []  # 清空列表以准备下一批节点

        # 处理剩余的节点
    if create_node_cypher_parts:
        create_node_cypher = f"CREATE {', '.join(create_node_cypher_parts)}"
        # print(create_node_cypher)  # 打印生成的Cypher查询语句以便调试
        tugraphConn.run(create_node_cypher)
    print(f"所有 {node_name} 节点同步完成,共 {len(node_result)} 条记录,不符合要求 {skip_num} 条;成功导入 {count} 条!")

# 导入边
def neo4jEdge2Tugrapg(connector,tugraphConn):
    query = """CALL db.relationshipTypes() YIELD relationshipType
    RETURN relationshipType;"""
    print("Executing query:", query)
    results_dege = connector.run(query)
    print(f"所有的关系:{results_dege}")
    print(f"指定的关系:{connector.specified_relation}")
    for edge in results_dege:
        if edge[0] not in connector.specified_relation and len(connector.specified_relation) != 0:
            continue
        #   获取关系结构
        query = f"""
                   MATCH (n1)-[r:{edge[0]}]->(n2) UNWIND keys(r) AS key RETURN DISTINCT key, labels(n1) AS start_node_labels, labels(n2) AS end_node_labels"""
        edge_properties = connector.run(query)
        start_node = edge_properties[0][1][0]
        end_node = edge_properties[0][2][0]

        if start_node not in connector.specified_node or end_node not in connector.specified_node:
            print(f"{edge[0]}关系中存在不符合要求的节点,跳过!")
            continue

        if tugraphConn.check_label_exists(edge[0],"edge"):
            print(edge[0],"关系已经存在!")
        else:
            print(edge[0],"关系不存在,需要新建!")
            #获取节点结构
            node_json = bulid_edge_json(edge[0],edge_properties, connector.node_pro_key[start_node], connector.node_pro_key[end_node])
            # 新建不存在的节点
            tugraphConn.create_edge_labels(node_json)
        # neo4j中查询出当前节点标签下所有节点
        queryNode = f"MATCH (n1)-[r:{edge[0]}]->(n2) RETURN n1,r,n2;"
        results = connector.run(queryNode)
        # 构建插入语句同步节点
        synchronize_edge(edge[0],results,start_node,end_node,tugraphConn)


def synchronize_edge(edge_name:str,edge_results,start_node_name,end_node_name,tugraphConn):
    # 构建Cypher查询语句
    print(f"同步 {edge_name} 关系共 {len(edge_results)} 记录,请等待执行完成...")
    create_node_cypher_parts = []
    count = 0
    skip_num = 0
    for edge in edge_results:
        properties_list = []
        for gx in edge:
            if hasattr(gx, 'type'):
                if list(gx.start_node.labels)[0] == start_node_name and list(gx.end_node.labels)[0] == end_node_name:
                    start_node = gx.start_node
                    end_node = gx.end_node
                    start_pro_key = tugraphConn.node_pro_key[start_node_name]
                    end_pro_key = tugraphConn.node_pro_key[end_node_name]
                    start_pro_val = start_node[start_pro_key]
                    end_pro_val = end_node[end_pro_key]
                    # 创建一个字典来存储所有属性
                    csv_map = {
                        # start_pro_key if start_node_name != end_node_name else start_pro_key+'1': start_pro_val,
                        # end_pro_key if start_node_name != end_node_name else end_pro_key+'2': end_pro_val
                    }
                    csv_map.update(gx)
                    # 将属性字典转换为 JSON 风格的字符串
                    # 构造关系属性字符串
                    rel_props_list = [f"{key}: '{value}'" for key, value in csv_map.items()]
                    rel_props_str = "{ " + ", ".join(rel_props_list) + " }"
                    # todo 批量操作存储属性的
                    # str1 = f"{{startId:'{start_pro_val}', endId:'{end_pro_val}', relProps:{rel_props_str}}}"
                    # properties_list.append(str1)
                    # create_node_cypher_parts.append(str1)
                    create_edge_cypher = f"""
                        MATCH (n1:{start_node_name} {{{start_pro_key}: '{start_pro_val}'}}),
                              (n2:{end_node_name} {{{end_pro_key}: '{end_pro_val}'}})
                        CREATE (n1)-[:{edge_name} {rel_props_str}]->(n2);
                    """
                    # print(f"执行新增关系[{edge_name}]的cypher:{create_edge_cypher}")
                    tugraphConn.run(create_edge_cypher)
                    count += 1
                else:
                    break
        #         批量操作 (tugraph不支持)
    #     if count % 3 == 0 and create_node_cypher_parts:
    #         map = {
    #
    #         }
    #         queue_cypher = f"""
    #             UNWIND [{', '.join(create_node_cypher_parts)}] AS relData
    #             MATCH (a:{start_node_name} {{{tugraphConn.node_pro_key[start_node_name]}: relData.startId}}), (b:{end_node_name} {{{tugraphConn.node_pro_key[end_node_name]}: relData.endId}})
    #             MERGE (a)-[r:{edge_name}]->(b)
    #             SET r += relData.relProps
    #             RETURN r;
    #         """
    #         print(f"执行新增关系[{edge_name}]的cypher:{queue_cypher}")
    #         # tugraphConn.run(queue_cypher)
    #         create_node_cypher_parts = []
    # if create_node_cypher_parts:
    #     queue_cypher = f"""
    #             UNWIND [{', '.join(create_node_cypher_parts)}] AS relData
    #             MATCH (a:{start_node_name} {{{tugraphConn.node_pro_key[start_node_name]}: relData.startId}}), (b:{end_node_name} {{{tugraphConn.node_pro_key[end_node_name]}: relData.endId}})
    #             MERGE (a)-[r:{edge_name}]->(b)
    #             SET r += relData.relProps
    #             RETURN r;
    #         """
    #     print(f"执行新增关系[{edge_name}]的cypher:{queue_cypher}")
    # tugraphConn.run(queue_cypher)

    print(f"所有 {edge_name} 节点同步完成,共 {len(edge_results)} 条记录,不符合要求 {skip_num} 条;成功导入 {count} 条!")


# 创建连接器
def conn_tugraph():
    # 配置连接信息
    host = "1111"
    port = 111
    user = "111"
    password = "111"
    db_name = "test121"
    db_type = "tugraph"
    connector = GraphConnector.from_uri_db(host, port, user, password, db_name, db_type)
    return connector
def conn_neo4j():
    # 配置连接信息
    host = "11111"
    port = 111
    user = "111"
    password = "111111"
    db_name = "111"
    db_type = "neo4j"
    connector = GraphConnector.from_uri_db(host, port, user, password, db_name, db_type)
    return connector


def main():
    neo4jConn = conn_neo4j()
    tugraphConn = conn_tugraph()
    print("Successfully connected to Graph!")
    # 创建TuGraph新图库 - 连接时选中,可以手动创建,或者在初始化方法中创建
    tugraphConn.create_graph_new("test121")
    # 导入节点
    neo4jNode2Tugrapg(neo4jConn,tugraphConn)
    # 导入边
    neo4jEdge2Tugrapg(neo4jConn,tugraphConn)
    # get_relation_tocsv(connector)

    # 关闭连接
    neo4jConn.close()
    tugraphConn.close()
    print("Connection closed.")

if __name__ == "__main__":
    main()

说明

只是用Python简单写了一个可以执行导入操作的脚本,欢迎指正和优化。边的导入比较慢(单条导入)。

有两种优化思路:

一、Cypher 语句:

UNWIND [{startId:'11', endId:'21', relProps:{ hphm: '33', sj: '44' }},

{startId:'22', endId:'23', relProps:{ hphm: '44', sj: '20080102' }},

{startId:'33', endId:'24', relProps:{ hphm: '55, sj: '20120110' }}] AS relData

MATCH (a:Ren {zjhm: relData.startId}), (b:Che {rowkey: relData.endId})

MERGE (a)-[r:sycl]->(b)

SET r += relData.relProps

RETURN r;

二、

https://tugraph-db.readthedocs.io/zh-cn/latest/development_guide.html Tugraph 官网的批量操作

CALL db.upsertEdge('edge1',{type:'node1',key:'node1_id'}, {type:'node2',key:'node2_id'}, [{node1_id:1,node2_id:2,score:10},{node1_id:3,node2_id:4,score:20}])

代码里面留了

但 我的版本好像都不支持!!!

后文

欢迎讨论

相关推荐
加德霍克1 小时前
【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
人工智能·python·学习·机器学习·作业
matlabgoodboy1 小时前
代码编写java代做matlab程序代编Python接单c++代写web系统设计
java·python·matlab
l1x1n01 小时前
No.37 笔记 | Python面向对象编程学习笔记:探索代码世界的奇妙之旅
笔记·python·学习
wanfeng_091 小时前
视频m3u8形式播放 -- python and html
python·html·video·hls·m3u8
阿俊仔(摸鱼版)2 小时前
Python 常用运维模块之OS模块篇
运维·开发语言·python·云服务器
lly_csdn1232 小时前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
西猫雷婶3 小时前
python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加
开发语言·python·opencv
金融OG3 小时前
99.11 金融难点通俗解释:净资产收益率(ROE)VS投资资本回报率(ROIC)VS总资产收益率(ROA)
大数据·python·算法·机器学习·金融
小唐C++4 小时前
C++小病毒-1.0勒索
开发语言·c++·vscode·python·算法·c#·编辑器
北 染 星 辰4 小时前
Python网络自动化运维---用户交互模块
开发语言·python·自动化