本地高精度OCR!由GPT-4o-mini驱动的开源OCR!

如果你正在寻找一款高精度、本地运行、支持复杂布局 的 OCR 工具,那么 Zerox OCR 无疑是一个极佳的选择。

Zerox OCR 会先将 PDF 文件转换成图像,再由 GPT-4o-mini模型识别并输出 Markdown,最后将所有页面对应的 Markdown 结果,汇总在一起形成完整的 Markdown 文档。

它不仅支持零样本 OCR,还可以轻松处理表格、图表等复杂布局,最将 OCR 结果以 Markdown 格式输出,优化了信息提取的便捷性。

核心优势

1、零样本 OCR

使用 GPT-4o-mini 模型进行文本识别,能够处理完全陌生的 PDF、图片等文档类型,不需要事先训练数据,即可提供高精度的 OCR 结果

2、Markdown 输出格式

在 OCR 转换过程中,Zerox 将每个识别的页面转化为简洁的 Markdown 格式,方便对文本进行后期处理和整理。

对于开发者或文档处理人员来说,这种格式极具实用性,易于导入到其他系统中。

3、支持复杂文档

不仅仅是简单的文本,Zerox 还可以处理包含表格、图表等复杂布局的文件。无论是扫描版 PDF 还是其他格式,Zerox 都可以对它们进行 OCR 识别,生成准确的文本内容。

4、本地运行与 API 支持

支持本地运行,无需担心隐私泄露问题。此外,它还提供了 API 接口,方便集成到你的应用中,提升业务流程的自动化和效率。

技术栈

  • Python

  • JavaScript

  • TypeScipt

工作流程

  • 提交文件:支持的文件格式包括 PDF、DOCX、图片等,你可以轻松提交多种格式的文件进行 OCR 处理。

  • 文件转图像:首先会将文档转换为图像,以便后续进行图像识别。

  • GPT-4o-mini 转换:每个生成的图像将被发送至 GPT-4o-mini 模型进行文本识别。

  • 汇总 Markdown:所有页面的 Markdown 结果被汇总成一个完整的 Markdown 文档,便于进一步处理和分析。

如何安装使用 Zerox?

Zerox OCR 除了提供有在线Demo可以使用,还提供有Node和Python的API包进行调用。

无需下载,即可在线体验 Zerox 的强大 OCR 能力
下面是以Python包安装方法及使用示例
bash 复制代码
pip install py-zerox

用法(必须先配置好GPT API 等必要参数):

python 复制代码
from pyzerox import zerox
import os
import json
import asyncio

async def main():
    file_path = "https://omni-demo-data.s3.amazonaws.com/test/cs101.pdf" ## local filepath and file URL supported

    ## process only some pages or all
    select_pages = None ## None for all, but could be int or list(int) page numbers (1 indexed)

    output_dir = "./output_test" ## directory to save the consolidated markdown file
    result = await zerox(file_path=file_path, model=model, output_dir=output_dir,
                        custom_system_prompt=custom_system_prompt,select_pages=select_pages, **kwargs)
    return result


# run the main function:
result = asyncio.run(main())

# print markdown result
print(result)

结果:

结语

Zerox OCR 是一款功能强大的本地开源工具,基于 GPT-4o-mini,能够高效处理复杂文档,并以 Markdown 格式输出,适合需要精确 OCR 处理的用户。无论你是开发者,还是需要处理大量文档的专业人士,Zerox OCR 都是一个值得一试的解决方案。

赶快下载试用,或体验在线版本,解锁文档处理的更多可能吧!

项目地址:https://github.com/getomni-ai/zerox

在线体验:https://getomni.ai/ocr-demo

相关推荐
五点钟科技10 小时前
Deepseek-OCR:《DeepSeek-OCR: Contexts Optical Compression》 论文要点解读
人工智能·llm·ocr·论文·大语言模型·deepseek·deepseek-ocr
爱吃饼干的熊猫2 天前
告别“机械扫描”:DeepSeek-OCR-2用“视觉因果流”让AI像人一样读懂文档
ocr
Luke Ewin2 天前
部署DeepSeek-OCR-2
ocr·deepseek·deepseek-ocr-2
confiself2 天前
DeepSeek-OCR 2: Visual Causal Flow学习
学习·ocr
AI周红伟2 天前
周红伟 DeepSeek-OCR v2技术原理和架构,部署案例实操
ocr
Coovally AI模型快速验证2 天前
10亿参数刷新OCR记录:LightOnOCR-2如何以小博大?
人工智能·学习·yolo·3d·ocr·人机交互
zstar-_2 天前
DeepSeek-OCR-2:视觉编码器的小优化
ocr
mseaspring2 天前
DeepSeek-OCR 2:视觉因果流的突破
ocr
virtaitech3 天前
云平台一键部署【rednote-hilab/dots.ocr】多语言文档布局解析模型
人工智能·科技·ai·ocr·gpu·算力
安如衫3 天前
从 OCR 到多模态 VLM Agentic AI:智能文档问答的范式转移全解
人工智能·ocr·agent·cv·rag·vlm